

Lehrstuhl für Oberflächentechnik im Maschinenbau Rheinisch-Westfälische Technische Hochschule Aachen Prof. Dr.-Ing. K. Bobzin

Korrelation von Plasma- und Schichteigenschaften bei der reaktiven Plasmasynthese von Hartstoffschichten

Martin Gottfried Engels

Juli 2019

Schriftenreihe Oberflächentechnik, Band 56 Hrsg.: Prof. Dr.-Ing. K. Bobzin Partner im LABORATORIUM FÜGETECHNIK OBERFLÄCHENTECHNIK

Korrelation von Plasma- und Schichteigenschaften bei der reaktiven Plasmasynthese von Hartstoffschichten

Correlation of Plasma and Coating Properties for the Reactive Plasma Deposition of Hard Coatings

Von der Fakultät für Maschinenwesen der Rheinisch-Westfälischen Technischen Hochschule Aachen zur Erlangung des akademischen Grades eines Doktors der Ingenieurwissenschaften genehmigte Dissertation

vorgelegt von

Martin Gottfried Engels

Berichter: Univ.-Prof. Dr.-Ing. Kirsten Bobzin Univ.-Prof. Dr.-Ing. Peter Awakowicz

Tag der mündlichen Prüfung: 26. Februar 2019

Schriftenreihe Oberflächentechnik

Band 56

Martin Gottfried Engels

Korrelation von Plasma- und Schichteigenschaften bei der reaktiven Plasmasynthese von Hartstoffschichten

Shaker Verlag Düren 2019

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: D 82 (Diss. RWTH Aachen University, 2019)

Copyright Shaker Verlag 2019 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8440-6794-1 ISSN 1864-0796

Shaker Verlag GmbH • Am Langen Graben 15a • 52353 Düren Telefon: 02421/99011-0 • Telefax: 02421/99011-9 Internet: www.shaker.de • E-Mail: info@shaker.de

Danksagung

Mein besonderer Dank gilt Univ.-Prof. Dr.-Ing. Kirsten Bobzin für die Unterstützung meiner Arbeit und die Möglichkeit, die Dissertation während meiner Zeit als wissenschaftlicher Mitarbeiter am Institut für Oberflächentechnik (IOT) der Rheinisch-Westfälischen Technischen Hochschule (RWTH) Aachen anzufertigen. Darüber hinaus möchte ich mich bei Univ.-Prof. Dr.-Ing. Peter Awakowicz für die Übernahme des Zweitgutachtens und bei Univ.-Prof. Dr.-Ing. Christian Hopmann für die Übernahme des Vorsitzes des Promotionsausschusses bedanken.

Die vorliegende Dissertation basiert auf Forschungsarbeiten, die im Rahmen der zweiten Phase des von der Deutschen Forschungsgemeinschaft (DFG) geförderten transregionalen Sonderforschungsbereichs SFB-TR 87 "Gepulste Hochleistungsplasmen zur Synthese nanostrukturierter Funktionsschichten" (DFG SFB TRR87/2) im Teilprojekt C6 "Auswirkungen von Plasmaeigenschaften auf Beschichtungseigenschaften in gepulsten Hochleistungsplasmen" sowie in Kooperation mit weiteren Teilprojekten durchgeführt wurden. Für die finanzielle Unterstützung der DFG sei an dieser Stelle gedankt. Ein besonderer Dank gilt auch Dr. Ante Hecimovic, Julian Held, Dr.-Ing. Dario Grochla, Lars Banko und Stefan Ries von der Ruhr-Universität Bochum (RUB) für die gemeinsamen Messreihen und hilfreichen Diskussionen im Rahmen des SFB-TR 87. Hervorzuheben ist auch die Unterstützung von Malte Schmachtenberg sowie den Kollegen vom Gemeinschaftslabor für Elektronenmikroskopie (GFE) der RWTH Aachen am Rasterelektronenmikroskop.

Ein großer Dank gilt allen aktuellen und ehemaligen Kollegen am IOT, mit denen ich die Möglichkeit hatte zusammenzuarbeiten. Insbesondere möchte ich meinem aktuellen Oberingenieur Dr.-Ing. Tobias Brögelmann für das stets große Vertrauen und die umfangreiche Unterstützung meiner Arbeiten danken. Darüber hinaus danke ich auch meinem ehemaligen Oberingenieur Dr.-Ing. Nazlim Bagcivan für das entgegengebrachte Vertrauen in meiner Anfangszeit am IOT. Ein großer Dank für die immer freundschaftliche und konstruktive Zusammenarbeit gilt besonders auch meinem aktuellen Gruppenleiter Nathan C. Kruppe. Darüber hinaus möchte ich mich bei meinem ehemaligen Gruppenleiter Christian Kalscheuer und den Kollegen aus den PVD-Gruppen Dr.-Ing. Mostafa Arghavani, Marco Carlet, Dennis Hoffmann, Tiancheng Liang, Mona Naderi, Christoph Schulze, Matthias Thiex und Martin Welters für die Unterstützung sowie die schöne Zusammenarbeit und gemeinsamen Erlebnisse

Danksagung

bedanken. Das Gleiche gilt auch für meine langjährigen Weggefährten am IOT Leonid Gerdt, Martin Knoch, Tim Königstein, Xifang Liao, Dr.-Ing. Mehmet Öte, Ludwig Pongratz, Jan Sommer, Dr.-Ing. Stefanie Wiesner und Wolfgang M. Wietheger. Für die administrative und technische Unterstützung danke ich darüber hinaus Anke Lück, Nevila Sinani, Ilona Wolf und Jutta Ziemes sowie Dirk Grünhagen, Thomas Offermann, Lore Stalpers, Wulf Brökel, Felix Dudzic und Uwe Werner. Auch meinen studentischen Hilfskräften Alexander Seidl und Daniel Weidner gilt für die tatkräftige Unterstützung ein großer Dank.

Ein ganz besonderer Dank gilt auch meiner Familie für die stete Unterstützung meines Werdegangs. Besonders meinen Eltern Claudia und Hubert Engels möchte ich dafür danken, dass sie mir das Studium ermöglicht haben. Abschließend gilt mein größter Dank meiner Frau Jessica dafür, dass sie mich immer uneingeschränkt unterstützt und sowohl die guten als auch die schlechten Phasen in Studium und Promotion gemeinsam mit mir durchgestanden hat. Ohne Dich hätte ich das nicht geschafft.

Zusammenfassung

Die Entwicklung industrieller Physical Vapour Deposition (PVD)-Prozesse zur Herstellung von Beschichtungen für Werkzeuge und Bauteile ist üblicherweise äußerst komplex. Speziell bei der Verwendung von Hochleistungsplasmen beim High Power Pulsed Magnetron Sputtering (HPPMS) oder für hybride Prozesse unter simultaner Verwendung des direct current Magnetron Sputtering (dcMS) und HPPMS ergibt sich aus der Vielzahl an einstellbaren Prozessparametern eine große Anzahl an Freiheitsgraden für die Prozessgestaltung und Schichtentwicklung. Die Plasmadiagnostik ist ein geeigneter Ansatz, um eine effizientere und ökonomischere Entwicklung industrieller Beschichtungsprozesse zu realisieren. Hieraus kann eine deterministische Beschreibung der Einflüsse der Prozessparameter auf die Plasmaeigenschaften erarbeitet werden. Diese können mit den Resultaten von ausgewählten Beschichtungsprozessen korreliert werden. Hierzu existieren bereits vielfältige Erkenntnisse, die sich jedoch meist auf den Labormaßstab oder einfache Beschichtungen beschränken. Diese lassen sich nur schwer auf industrielle Prozesse oder komplexe Schichtsysteme übertragen.

Zur Lösung dieser Probleme werden in dieser Arbeit Erkenntnisse zu deterministischen Zusammenhängen zwischen Plasma- und Schichteigenschaften in industriellen Beschichtungsprozessen vorgestellt. Die Arbeiten orientieren sich an der Anwendung von beschichteten Komponenten für die Kunststoffverarbeitung. Als Schichtsysteme werden Hartstoffschichten im System Cr-Al-O-N betrachtet. Basierend auf den Anforderungen an diese Schichtsysteme werden gezielt Erkenntnisse zum Einfluss der Prozessparameter auf ausgewählte Plasma- und Schichteigenschaften sowie deren Korrelationen erarbeitet. Zu diesem Zweck werden insbesondere Methoden zur Plasmadiagnostik in reaktiven HPPMS- und dcMS/HPPMS-Prozessen im industriellen Maßstab entwickelt. Dabei stehen eine Durchführung von substratseitiger Plasmadiagnostik unter Verwendung der Biasspannung sowie die Möglichkeit zur ortsaufgelösten Analyse von Prozessen mit mehreren Kathoden im Fokus. Bei der Korrelation von Plasma- und Schichteigenschaften erfolgen die Arbeiten sowohl für einfache als auch für komplexe Geometrien. Abschließend das Potential von künstlichen neuronalen Netzwerken (KNN) zur Analyse der stark nichtlinearen und daher nicht durchgängig deterministisch beschreibbaren Zusammenhänge zwischen den Plasma- und Schichteigenschaften für mehrere variierende Prozessparameter evaluiert. Diese Arbeiten haben das Ziel, die Entwicklung von industriellen Beschichtungsprozessen durch die Prognose von Prozessparametern aus Plasmaeigenschaften mittels der kognitiven Verknüpfung eines KNN maßgeblich zu vereinfachen.

Abstract

The development of industrial physical vapour deposition coating processes for the deposition of functional coatings for tools and components is usually extremely complex. Especially when using high-performance plasmas for High Power Pulsed Magnetron Sputtering (HPPMS) or for hybrid processes with simultaneous use of direct current Magnetron Sputtering (dcMS) and HPPMS, the large number of adjustable process parameters results in a large number of degrees of freedom for process design and coating development. The plasma diagnostics is a suitable approach for realizing a more efficient and economical development of industrial coating processes without an empirical procedure. From the plasma diagnostics, a fundamental understanding of the cause-effect relationships between the process parameters and the plasma properties can be developed. The results of these investigations can be correlated with the results of selected coating processes. There are already numerous findings on the cause-effect relationships between process parameters, plasma and coating properties. However, these works are mostly limited to the laboratory scale or simple coatings, which cannot simply be transferred to industrial scale processes or complex coating systems.

For these reasons, this work will provide insights into the cause-effect relationships between plasma and coating properties in industrial coating processes. The investigations carried out are oriented towards the application of coatings for components in plastics processing. Therefore, the nitride hard coatings (Cr,Al)N and (Cr,Al)ON, which are appropriate for this application, are regarded as coating systems. Based on the requirements for coatings for components in plastics processing, specific findings on the influence of process parameters on selected plasma and coating properties and their correlations are elaborated. Especially, methods for substrate-oriented plasma diagnostics in industrial reactive HPPMS and dcMS/HPPMS processes are developed for this purpose. The focus is on the applicability of substrate bias and the possibility of spatially resolved analysis of processes with several cathodes. In the correlation of plasma and coating properties, work is also carried out for both simple and complex geometries in order to identify process parameters that enable the best possible coating homogeneity on complex components. Finally, a series of experiments is presented in which the potential of artificial neural networks to describe the strongly nonlinear relationships between plasma and coating properties is evaluated. This work aims at significantly simplifying the development of industrial coating processes by predicting process parameters from measured plasma properties.

Inhaltsverzeichnis

1	Einleitung	1
2	Grundlagen und Stand der Technik	4
2.1	Einsatz von Oberflächenbeschichtungen in der Kunststoffverarbeitung	4
2.2	Chrombasierte Hartstoffschichten	6
2.3	Grundlagen der physikalischen Gasphasenabscheidung	7
2.4	dcMS-, HPPMS- und dcMS/HPPMS-Prozesse	11
2.5	Plasmadiagnostik zur Prozesscharakterisierung	13
3	Zielsetzung und Lösungsweg	14
4	Methoden zur Plasmadiagnostik, Schichtherstellung und -analyse	15
4.1	Industrielle Beschichtungsanlage CC800/9-Modell	15
4.2	Verfahren zur Plasmadiagnostik	16
4.3	Substrate zur Abscheidung von (Cr,Al)N- und (Cr,Al)ON-Schichten	23
4.4	Verfahren zur Schichtcharakterisierung	24
4.5	Programmierung künstlicher neuronaler Netzwerke	28
5	Analyse reaktiver HPPMS-Prozesse	30
5.1	Stand der Forschung und Motivation zum HPPMS-Prozess	30
5.2	Einfluss der Pulsfrequenz auf Plasma- und Schichteigenschaften	33
5.3	Korrelation der Plasmarandschicht mit der Schichthomogenität auf komplexen	
	Geometrien	54
5.4	Plasmadiagnostik unter Verwendung von Biasspannung	63
5.5	Zwischenfazit zum HPPMS-Prozess	85
6	Analyse reaktiver dcMS/HPPMS-Prozesse	86
6.1	Stand der Forschung und Motivation zum dcMS/HPPMS-Prozess	86
6.2	Ortsaufgelöste Analyse hybrider Beschichtungsprozesse	88
6.3	Zwischenfazit zum dcMS/HPPMS-Prozess	104

Inhaltsverzeichnis

7	Korrelationsfindung mittels künstlicher neuronaler Netzwerke	105
7.1	Stand der Forschung und Motivation zu KNN	105
7.2	Training künstlicher neuronaler Netzwerke anhand von Plasma- und	
	Schichteigenschaften des Schichtsystems (Cr,Al)ON	106
7.3	Zwischenfazit zu KNN	119
8	Zusammenfassung	120
9	Ausblick	122
10	Literaturverzeichnis	123

Abbildungsverzeichnis

Abbildung 1.1:	Vorgehen bei der Entwicklung von PVD-Beschichtungsprozessen	
	für Werkzeuge und Bauteile in Forschung und Praxis	1
Abbildung 2.1:	Schematische Darstellung einer Plastifiziereinheit in der Kunststoff-	
	verarbeitung mit Darstellung des Temperatur-, Druck- und Porositäts-	
	verlauf entlang der Extruderschnecke nach [BGB+16, Bon16]	4
Abbildung 2.2:	Schichtsystem (Cr,Al)N mit Kristallstrukturen und Grenze des	
	Strukturübergangs in Abhängigkeit vom Al-Gehalt x(Al) nach [Atz89]	6
Abbildung 2.3:	Bindung auftreffender Plasmaspezies zum Substrat in Abhängigkeit	
	der kinetischen Energie E _{kin} nach [Bob13, RV93]	8
Abbildung 2.4:	Schematische Darstellung eines industriellen dcMS- oder	
	HPPMS- Beschichtungsprozesses unter Verwendung eines	
	unbalanced Magnetron	11
Abbildung 4.1:	Schematische Darstellung der für die Plasmadiagnostik modifizierten	
	industriellen Beschichtungsanlage CC800/9-Modell (a) und	
	eines CrAl20-Targets (b)	16
Abbildung 4.2:	Mittels LS gemessene U-I-Kurven für dcMS- und HPPMS-Prozesse	
	mit variierender Pulsfrequenz f und Puls-an-Zeit $t_{\rm on}$ sowie	
	exemplarische Bestimmung der Plasmaparameter	
	Elektronentemperatur $T_{\rm e}$, Elektronendichte $n_{\rm e}$ und	
	Plasmapotential $\varphi_{\mathbb{P}}$ für den dcMS-Prozess (schwarze Kurve)	21
Abbildung 4.3:	Schematischer Querschnitt der präparierten Hartmetalle	
	mit Markierung der Positionen für REM- und EDX-Messungen	
	nach [BBK+17a]	23
Abbildung 4.4:	Mikrostrukturierter Spannungssensor (a) und dessen	
	Querschnitt (b) zur Bestimmung von Eigenspannungen	
	in PVD-Schichten [Gro16, GBP+18]	26
Abbildung 4.5:	Schematische Darstellung eines KNN mit drei Ein-und	
	Ausgangsneuronen sowie einem Hidden Layer mit	
	ebenfalls drei Neuronen	28

Abbildung 5.1:	Einfluss der Metall und N-Ionenflüsse (oben) auf die	
	Morphologie (Mitte) und Zusammensetzung (unten) von	
	(Cr,Al)N für Puls-an-Zeiten t_{on} = 40 μs (a) und t_{on} = 200 μs (b)	
	nach [BBB+16, BBG+13, KBB+13]	31
Abbildung 5.2:	Schematische Darstellung der Positionierung der OES-Kollimatoren	
	mit Sichtlinie parallel zur HPPMS-Kathode (a), des MaSp (b) sowie	
	der Substrate und σ -Sensoren (d) nach [BBK+17b]	34
Abbildung 5.3:	Mittels Oszilloskop gemessene Strom- (a) und Spannungskennlinien (b)
	der HPPMS-Kathode in (Cr,Al)N-Prozessen bei Pulsfrequenzen von	
	f = 300 Hz, f = 500 Hz und f = 1.000 Hz nach [BBK+17b]	36
Abbildung 5.4:	Mittels wellenlängenkalibrierter OES bestimmte zeitaufgelöste	
	Linienintensitäten der Spezies Cr I (a), Cr II (b) und Ar I (c)	
	in senkrechter Sichtlinie zur Kathode im (Cr,Al)N-Prozess mit	
	Pulsfrequenzen von f = 300 Hz bis f = 2.000 Hz nach [BBK+17b]	37
Abbildung 5.5:	Mittels wellenlängenkalibrierter OES bestimmte zeitgemittelte und auf	
	das jeweilige Maximum normierte Linienintensitäten aller messbaren	
	Plasmaspezies, gemessen in substratseitiger, paralleler Sichtlinie zur	
	Kathode, im (Cr,Al)N-Prozess mit Pulsfrequenzen von f = 200 Hz bis	
	f = 2.000 Hz nach [BBK+17b]	38
Abbildung 5.6:	Mittels MaSp im SIMS-Modus substratseitig gemessene IEDF der	
	Metall- (a-d) und Gasspezies (e-h) im HPPMS-Prozess mit	
	Pulsfrequenzen von f = 300 Hz bis f = 2.000 Hz nach [BBK+17b]	40
Abbildung 5.7:	Mittels MaSp im SIMS-Modus substratseitig gemessene, logarithmisch	
	aufgetragene relative Ionenflüsse J $_{\rm X}$ aller Plasmaspezies (a) sowie	
	Ionenflussverhältnisse (b) im HPPMS-Prozess mit f = 200 Hz bis	
	f = 2.000 Hz nach [BBK+17b]	42
Abbildung 5.8:	Mit REM analysierte Morphologie im Querbruch des mittels HPPMS	
	mit Pulsfrequenzen f = 300 Hz bis f = 2.000 Hz auf X42Cr13	
	abgeschiedenen (Cr,Al)N nach [BBK+17b]	44
Abbildung 5.9:	Aus REM-Querbruchbildern abgeleitete Abscheiderate R von mittels	
	HPPMS mit Pulsfrequenzen f = 300 Hz bis f = 2.000 Hz auf X42Cr13	
	abgeschiedenem (Cr,Al)N nach [BBK+17b]	46

Abbildung 5.10:	Mit GDOES bestimmte chemische Zusammensetzung x sowie Al/Cr-	
	Verhältnis von mittels HPPMS mit Pulsfrequenzen f = 300 Hz bis	
	f = 2.000 Hz auf X42Cr13 abgeschiedenem (Cr,Al)N nach [BBK+17b]	47
Abbildung 5.11:	Aus $\sigma\text{-}Sensoren$ ermittelte Eigenspannungen σ der mittels HPPMS	
	mit Pulsfrequenzen f = 300 Hz bis f = 2.000 Hz auf X42Cr13	
	abgeschiedenen (Cr,Al)N-Schichten nach [BBK+17b]	48
Abbildung 5.12:	Mittels Synchrotron-XRD gemessene Beugungsmuster der CrN-Phase	
	des mittels HPPMS mit Pulsfrequenzen f = 300 Hz bis f = 2.000 Hz auf	
	X42Cr13 abgeschiedenen (Cr,Al)N nach [BBK+17b]	50
Abbildung 5.13:	Aus Synchrotron-XRD-Spektren abgeleitetes Verhältnis der	
	(111)- zur (200)-Orientierung der CrN-Phase von mittels	
	HPPMS mit f = 300 Hz bis f = 2.000 Hz auf X42Cr13	
	abgeschiedenem (Cr,Al)N nach [BBK+17b]	51
Abbildung 5.14:	Mit NI gemessene Eindringhärte $H_{\mbox{\tiny IT}}$ und -modul $E_{\mbox{\tiny IT}}$ der mittels	
	HPPMS mit Pulsfrequenzen f = 300 Hz bis f = 2.000 Hz auf X42Cr13	
	abgeschiedenen (Cr,Al)N-Schichten	52
Abbildung 5.15:	Schematische Darstellung der Positionierung der LS (a) und der	
	Substrate (b) vor der dcMS- bzw. HPPMS-Kathode bei der	
	Abscheidung von (Cr,Al)N nach [BBK+17a]	55
Abbildung 5.16:	Aus LS-Messungen ermittelte Randschichtdicke s _D , Elektronen-	
	temperatur $T_{\rm e}$ und Elektronendichte $n_{\rm e}$ für dcMS- und HPPMS-	
	Prozesse mit Pulsfrequenzen f = 500 Hz bis f = 2.000 Hz und	
	Puls-an-Zeiten $t_{\rm on}$ = 40 μs bis $t_{\rm on}$ = 200 μs sowie Biasspannung	
	U _B = 0 V nach [BBK+17a]	57
Abbildung 5.17:	REM-Morphologie im Querbruch des mittels dcMS und HPPMS mit	
	varii erender Pulsfrequenz f und Puls-an-Zeit $t_{\mbox{\scriptsize on}}$ und Bias spannung	
	$U_{\rm B}{=}\text{-}50~V$ auf Hartmetallen mit einem Schnitt mit einer Breite von	
	0,75 mm abgeschiedenen (Cr,Al)N nach [BBK+17a]	59
Abbildung 5.18:	Korrelation der Randschichtdicke $s_{\rm D}$ mit aus REM-Querbruchbildern	
	abgeleiteten Abscheiderate Verhältnissen $R_{\text{S}}/R_{\text{OF}}$ und $R_{\text{F}}/R_{\text{OF}}$ von mittels	
	dcMS und HPPMS mit variierender Pulsfrequenz f und Puls-an-Zeit t_{on}	
	auf Hartmetallen abgeschiedenem (Cr,Al)N nach [BBK+17a]	60

Abbildung 5.19:	Korrelation der Randschichtdicke s_D mit dem aus EDX-Messungen	
	berechneten Al/Cr-Verhältnis an der Oberfläche und Flanke des mittels	
	dcMS und HPPMS mit varii erender Pulsfrequenz f und Puls-an-Zeit $t_{\rm on}$	
	auf Hartmetallen abgeschiedenen (Cr,Al)N nach [BBK+17a]	61
Abbildung 5.20:	Schematische Darstellung der Positionierung der LS (a), des MaSp (b),	
	des OES-Kollimators (c) sowie des GFA-Sensors, der Substrate und	
	σ -Sensoren (d) vor der HPPMS-Kathode bei der Abscheidung von	
	(Cr,Al)N unter Verwendung von Biasspannung nach [BBK+18c]	64
Abbildung 5.21:	Aus LS-Messungen ermittelte Randschichtdicke s _D , Elektronen-	
	temperatur T_{e} und Elektronendichte n_{e} für HPPMS-Prozesse	
	mit Biasspannungen $U_B = 0$ V bis $U_B = -250$ V nach [BBK+18c]	67
Abbildung 5.22:	Mit GFA bestimmte zeitaufgelöste mittlere Ionenenergie E_{i}	
	aller Plasmaspezies im Zeitraum von t = 0 μ s bis t = 200 μ s	
	nach Beginn des HPPMS-Pulses im (Cr,Al)N-Prozess mit	
	Biasspannungen $U_B = 0 V$ bis $U_B = -250 V$	68
Abbildung 5.23:	Mit GFA bestimmte zeitaufgelöste Ionenstromdichte ρ_i aller	
	Plasmaspezies im Zeitraum von t = 0 μ s bis t = 200 μ s nach	
	Beginn des HPPMS-Pulses im (Cr,Al)N-Prozess mit	
	Biasspannungen $U_B = 0$ V bis $U_B = -250$ V	69
Abbildung 5.24:	Mittels MaSp im SIMS-Modus gemessene zeitgemittelte IEDF	
	der Plasmaspezies Cr^+ (a), Cr^{++} (b), Al^+ (c), Al^{++} (d), Ar^+ (e), Ar^{++} (f),	
	$N_{2}{}^{\scriptscriptstyle +}$ (g), $N^{\scriptscriptstyle +}$ (h) im (Cr,Al)N-Prozess mit U_{B} = 0 V und U_{B} = -250 V	
	nach [BBK+18c]	70
Abbildung 5.25:	Mittels MaSp im SIMS-Modus gemessene, logarithmisch	
	aufgetragene relative Ionenflüsse $J_{\rm X}$ aller Plasmaspezies (a)	
	sowie Ionenflussverhältnisse (b) im HPPMS-Prozess mit	
	$U_B = 0 V$ bis $U_B = -250 V$ nach [BBK+18c]	72
Abbildung 5.26:	Mittels wellenlängenkalibrierter OES bestimmte zeitgemittelte und auf	
	das jeweilige Maximum normierte Linienintensitäten der Spezies Cr I,	
	Cr II, Al I, Ar I, Ar II und N I (a) sowie relative Linienintensität-	
	Verhältnisse Al I/Cr I, Cr II/Cr I und Ar II/Ar I (b), gemessen in	
	paralleler Sichtlinie zur HPPMS-Kathode im (Cr,Al)N-Prozess mit	
	Biasspannungen $U_B = 0$ V bis $U_B = -250$ V nach [BBK+18c]	74

Abbildung 5.27:	REM-Morphologie im Querbruch des mittels HPPMS mit $\mathrm{U}_{\mathrm{B}}{=}0\mathrm{V}$	
	bis U_B = -250 V auf Hartmetallen mit einem Schnitt mit einer Breite	
	von 0,75 mm abgeschiedenen (Cr,Al)N nach [BBK+18c]	77
Abbildung 5.28:	Aus REM-Querbruchbildern abgeleitete Abscheiderate R an Schnitt,	
	Oberfläche und Flanke sowie Verhältnis R _s /R _{OF} von mittels HPPMS	
	mit Biasspannungen $U_B = 0$ V bis $U_B = -250$ V auf Hartmetallen	
	abgeschiedenem (Cr,Al)N nach [BBK+18c]	78
Abbildung 5.29:	Mit GDOES bestimmte chemische Zusammensetzung x sowie	
	Al/Cr-Verhältnis von mittels HPPMS mit Biasspannungen	
	$U_B = 0 \text{ V}$ bis $U_B = -250 \text{ V}$ auf Hartmetallen abgeschiedenem	
	(Cr,Al)N nach [BBK+18c]	80
Abbildung 5.30:	XRD-Spektren mit Identifikation der kubischen CrN- und	
	AlN-Phasen und -Kristallorientierungen des mittels HPPMS	
	mit $U_B = 0$ V bis $U_B = -250$ V auf Hartmetallen abgeschiedenen	
	(Cr,Al)N nach [BBK+18c]	82
Abbildung 5.31:	Mit NI gemessene Eindringhärte $H_{\mbox{\tiny IT}}$ und -modul $E_{\mbox{\tiny IT}}$ der mittels	
	HPPMS mit Biasspannung $U_B = 0$ V bis $U_B = -250$ V auf Hartmetallen	
	abgeschiedenen (Cr,Al)N-Schichten nach [BBK+18c]	83
Abbildung 6.1:	Korrelation des mittels wellenlängenkalibrierter OES bestimmten	
	Linienintensität-Verhältnis Al I/Cr I im Plasma mit dem	
	Al/Cr-Verhältnis in der Beschichtung für dcMS-, HPPMS-	
	und dcMS/HPPMS-Prozesse mit variierender Pulsfrequenz f	
	und Puls-an-Zeit t _{on} nach [BBK+16a]	87
Abbildung 6.2:	Schematische Darstellung der ortsaufgelösten Positionierung von GFA-	
	Sensor und OES-Kollimator mit Sichtlinie senkrecht zur dcMS- bzw.	
	HPPMS-Kathode (a) sowie der Substrate (b) in Abhängigkeit des	
	Winkels a bei der Abscheidung von (Cr,Al)N nach [BBK+18b]	89
Abbildung 6.3:	Mit GFA gemessene normierte IEDF aller Plasmaspezies zum	
	Zeitpunkt t = 200 μs nach Beginn des HPPMS-Pulses im Hybrid-	
	prozess an den Position α = 33 ° vor der HPPMS-Kathode und	
	α = 107 ° vor der dcMS-Kathode nach [BBK+18b]	91

Abbildung 6.4:	Mit GFA bestimmte orts- und zeitaufgelöste Verschiebung der	
	mittleren Ionenenergie ΔE_i aller Plasmaspezies im Zeitraum von	
	t = 100 μ s bis t = 2.000 μ s nach Beginn des HPPMS-Pulses im	
	Hybridprozess mit variierendem Winkel α nach [BBK+18b]	93
Abbildung 6.5:	Mit GFA bestimmte orts- und zeitaufgelöste Ionenstromdichte $\rho_{\rm i}$	
	aller Plasmaspezies im Zeitraum von t = 100 μ s bis t = 2.000 μ s nach	
	Beginn des HPPMS-Pulses im Hybridprozess mit variierendem	
	Winkel a nach [BBK+18b]	94
Abbildung 6.6:	In senkrechter Sichtlinie zu den Kathoden mittels wellenlängen-	
	kalibrierter OES gemessene Spektren im Hybridprozess an	
	den Positionen a = 29 ° vor der HPPMS-Kathode und a = 95 °	
	vor der dcMS-Kathode nach [BBK+18b]	96
Abbildung 6.7:	Mit wellenlängenkalibrierter OES gemessene normierte Linien-	
	intensitäten von Cr I und Cr II und relative Verhältnisse Cr II/Ar II,	
	Al I/Cr I und Cr II/Cr I, im Hybridprozess mit variierendem	
	Winkel a nach [BBK+18b]	97
Abbildung 6.8:	Ortsaufgelöste REM-Morphologie im Querbruch des mittels des	
	Hybridprozesses auf X42Cr13 abgeschiedenen (Cr,Al)N an den	
	Positionen von $\alpha = 0$ ° (a) bis $\alpha = 50$ ° (g) im Einflussbereich der	
	HPPMS-Kathode und α = 60 ° (h) bis α = 140 ° (o) im Einfluss-	
	bereich der dcMS-Kathode nach [BBK+18b]; Beschichtungsdauer	
	von t = 40 min für (j) bis (m), für weitere Beschichtungen t = 80 min	98
Abbildung 6.9:	Aus REM-Querbruchbildern abgeleitete ortsaufgelöste	
	Abscheiderate R von mittels des Hybridprozesses auf	
	X42Cr13 abgeschiedenem (Cr,Al)N nach [BBK+18b];	
	Messunsicherheit aufgrund geringer Abweichungen nicht gezeigt	99
Abbildung 6.10:	Korrelation der Ionenstromdichte zur Zeit t = 200 μs nach Beginn	
	des HPPMS-Pulses und der Abscheiderate R von (Cr,Al)N auf	
	X42Cr13 für den Hybridprozess	101
Abbildung 6.11:	Mit ESMA bestimmte chemische Zusammensetzung x und daraus	
	abgeleitetes Al/Cr-Verhältnis sowie aus EDX-Resultaten berechnetes	
	Al/Cr-Verhältnis des mittels des Hybridprozesses im Winkel a auf	
	X42Cr13 abgeschiedenen (Cr,Al)N nach [BBK+18b]	102

Abbildung 7.1:	Schematische Darstellung der Positionierung des OES-Kollimators mi	t
C	Sichtlinie parallel zur HPPMS-Kathode (a), des MaSp (b) sowie der	
	Substrate (c) bei der Abscheidung von (Cr,Al)ON nach [BBK+18a]	108
Abbildung 7.2:	Mittels wellenlängenkalibrierter OES bestimmtes Linienintensitäts-	
0	verhältnis I _{Al} /I _{Cr} , gemessen in paralleler Sichtlinie zur HPPMS-Kathod	e,
	im (Cr,Al)ON-Prozess mit variierender Pulsfrequenz f und Reaktivgas	<u>-</u>
	Flussverhältnis j(O ₂)/j(N ₂) nach [BBK+18a]	110
Abbildung 7.3:	Aus Messungen mittels MaSp im SIMS-Modus berechnetes	
-	Ionenflussverhältnis J _M /J _G im HPPMS-Prozess mit variierender	
	Pulsfrequenz f und Reaktivgas-Flussverhältnis j(O2)/j(N2)	
	nach [BBK+18a]	111
Abbildung 7.4:	REM-Morphologie im Querbruch des mittels HPPMS mit	
	variierender Pulsfrequenz f und Reaktivgas-Flussverhältnis	
	j(O ₂)/j(N ₂) auf X42Cr13 abgeschiedenen (Cr,Al)ON nach [BBK+18a]	113
Abbildung 7.5:	Aus REM-Querbruchbildern abgeleitete Abscheiderate R (a)	
	sowie aus GDOES-Messungen berechnetes Al/Cr-Verhältnis (b)	
	und mittels NI gemessene Eindringhärte $H_{\mbox{\tiny IT}}$ (c) des mittels HPPMS	
	mit variierender Pulsfrequenz f und Reaktivgas-Flussverhältnis	
	j(O ₂)/j(N ₂) auf X42Cr13 abgeschiedenen (Cr,Al)ON nach [BBK+18a]	114
Abbildung 7.6:	KNN-Korrelation der Plasma- und Schichteigenschaften	
	Al/Cr-Verhältnis und $I_{\rm Al}/I_{\rm Cr}$ (a) sowie $H_{\rm IT}$ und J_M/J_G (b) für	
	Netzstrukturen 1-5-5-1 und 1-5-5-5-1, bezogen auf den HPPMS-	
	Prozess mit variierender Pulsfrequenz f und Reaktivgas-	
	Flussverhältnis j(O2)/j(N2) nach [BBK+18a]	116
Abbildung 7.7:	Korrelation der Prozessparameter Pulsfrequenz f und Reaktivgas-	
	Flussverhältnis j(O_2)/j(N_2) und Plasmaeigenschaften $I_{\rm Al}/I_{\rm Cr}$ (a) sowie	
	J _M /J _G (b) für den HPPMS-Prozess nach [BBK+18a]	118

Tabellenverzeichnis

Tabelle 4.1:	Wellenlängen angeregter und ionisierter Plasmaspezies		
	im OES-Spektrum	18	
Tabelle 5.1:	Prozessparameter für die Plasmadiagnostik sowie die Abscheidung		
	von (Cr,Al)N mittels HPPMS unter Variation der Pulsfrequenz f	35	
Tabelle 5.2:	Prozessparameter für die Plasmadiagnostik mittels LS und die		
	Abscheidung von (Cr,Al)N mittels dcMS und HPPMS unter		
	Variation der Pulsfrequenz f und der Puls-an-Zeit ton	56	
Tabelle 5.3:	Prozessparameter für die Plasmadiagnostik mittels LS, GFA,		
	MaSp und OES sowie die Abscheidung von (Cr,Al)N mittels		
	HPPMS unter Variation der Biasspannung U _B	66	
Tabelle 6.1:	Prozessparameter für die ortsaufgelöste Plasmadiagnostik		
	mittels GFA und OES sowie die Abscheidung von (Cr,Al)N		
	mittels dcMS/HPPMS	90	
Tabelle 7.1:	Prozessparameter für die Plasmadiagnostik mittels OES		
	und MaSp sowie die Abscheidung von (Cr,Al)ON mittels		
	HPPMS unter Variation der Pulsfrequenz f und des		
	Reaktivgas-Flussverhältnis j(O2)/j(N2)	109	

Abkürzungen

AEPT	Lehrstuhl für Allgemeine Elektrotechnik und Plasmatechnik
	der Ruhr-Universität Bochum
dc	direct current
	(Gleichstrom)
dcMS	direct current Magnetron Sputtering
	(Gleichstrommagnetronsputtern)
DFG	Deutscher Forschungsgemeinschaft
DIN	Deutsches Institut für Normung
EDX	Energy Dispersive X-ray spectroscopy
	(Energiedispersive Röntgenspektroskopie)
ESMA	Elektronenstrahlmikroanalyse
GDOES	Glow-Discharge Optical Emission Spectroscopy
	(Glimmentladungsspektroskopie)
GFA	Gegenfeldanalyse
GFE	Gemeinschaftslabor für Elektronenmikroskopie
	der RWTH Aachen University
GID	Grazing Incidence Diffraction
	(Streifender Einfall)
hex	Hexagonal
HPPMS	High Power Pulsed Magnetron Sputtering
	(Hochleistungsimpulsmagnetronsputtern)
kfz	kubisch flächenzentriert
IEDF	Ion Energy Distribution Function
	(Ionenenergieverteilungsfunktion)
IOT	Institut für Oberflächentechnik der RWTH Aachen University
ISF	Institut für Schweiß- und Fügetechnik der RWTH Aachen University
JCPDS	Joint Committee on Powder Diffraction Standards
KNN	Künstliches Neuronales Netzwerk
LS	Langmuir-Sonde
MaSp	Energieaufgelöstes Massenspektrometer
MRS	Multipol-Resonanz-Sonde

Abkürzungen

MS	Magnetron Sputtering
	(Magnetronsputtern)
NI	Nanoindentation
OES	Optische Emissionsspektroskopie
PC	Polycarbonat
PVD	Physical Vapour Deposition
	(Physikalische Gasphasenabscheidung)
REM	Rasterelektronenmikroskopie
RPROP	Resilient Backpropagation
	(Elastische Fortpflanzung)
RWTH	Rheinisch-Westfälische Technische Hochschule
SE	Sekundärelektronen
SFB-TR	Transregionaler Sonderforschungsbereich
tanh	Tangens Hyperbolicus
U-I-Kurve	Spannungs-Strom-Kurve
WdM	Lehrstuhl für Werkstoffe der Mikrotechnik
	der Ruhr-Universität Bochum
XPS	X-ray Photoelectron Spectroscopy
	(Röntgenphotoelektronenspektroskopie)
XRD	X-ray Diffraction
	(Röntgendiffraktometrie)
σ-Sensor	Spannungssensor

Elemente und Verbindungen

Al	Aluminium
Al I	Angeregtes Aluminium
Al II; Al+	Einfach ionisiertes Aluminium
Al++	Zweifach ionisiertes Aluminium
Al_2O_3	Aluminiumoxid
Ar	Argon
Ar I	Angeregtes Argon
Ar II; Ar+	Einfach ionisiertes Argon
Ar ⁺⁺	Zweifach ionisiertes Argon
AlN	Aluminiumnitrid
Cr	Chrom
Cr I	Angeregtes Chrom
Cr II; Cr+	Einfach ionisiertes Chrom
Cr++	Zweifach ionisiertes Chrom
CrN	Chromnitrid
Ν	Stickstoff
NI	Angeregter Stickstoff
N II; N ⁺	Einfach ionisierter Stickstoff
N_2	Molekularer Stickstoff
0	Sauerstoff
O ₂	Molekularer Sauerstoff
Ti	Titan
TiAlCr	Titanaluminiumchrom
TiAlYN	Titanaluminiumyttriumnitrid
TiBN	Titanbornitrid
TiN	Titannitrid
(Cr,Al)N	Chromaluminiumnitrid
(Cr,Al)ON	Chromaluminiumoxynitrid
(Ti,Al)N	Titanaluminiumnitrid
(Ti,C)N	Titancarbonitrid
(Ti,Zr)N	Titanzirkoniumnitrid

Formelzeichen / Einheiten

A	Amplitude Gauß-Verteilung	-
AV	Aspektverhältnis	-
Cu-K(a)	XRD-Energie	eV
d	Durchmesser	mm
D	Duty cycle	-
d_{ST}	Abstand Substrat-Target	mm
e	Elementarladung	с
Е	Energie	eV
Ei	Ionenengie	eV
EIII	Eindringmodul	GPa
E _{kin}	Kinetische Energie	eV
E _m ; E _n	Energieniveaus	eV
f	Frequenz	Hz
F	Kraft	mN
h	Höhe	mm
H _{IT}	Eindringhärte	GPa
HRC	Rockwell-Härte	-
k _B	Boltzmannkonstante	$m^2 \cdot kg/s^2 \cdot K$
Ι	Intensität	-
Ι	Strom	А
j	Gasfluss	sccm
J	Ionenfluss	-
l_P	Sondendrahtlänge	mm
m _e	Elektronenmasse	kg
n _e	Elektronendichte	1/m ³
ni	Ionendichte	1/m ³
n ₀	Neutralgasdichte	1/m ³
Р	Leistung	kW
P _H	Heizleistung	kW
р	Druck	bar
р	Prozessdruck	mPa
R	Abscheiderate	µm/h

r _P	Sondendrahtradius	mm
s	Schichtdicke	μm
S	Sputterrate	-
S D	Plasmarandschichtdicke	μm
Т	Temperatur	°C
Te	Elektronentemperatur	Κ
T_i	Ionentemperatur	K
Ts	Substrattemperatur	°C
t	Zeit	s; min; h
t _{on}	Puls-an-Zeit	μs
u	Atommasse	g
U	Spannung	V
UB	Biasspannung	V
ULS	Langmuir-Sonden Spannung	V
w	Breite Gauß-Verteilung	-
x	Chemische Zusammensetzung	At%
X _{Ind}	Eindringtiefe	%
Xc	Mittelwert Gauß-Verteilung	-
yo	Offset Gauß-Verteilung	-
Δ	Differenz	-
ε ₀	Vakuum-Permittivität	$\mathbf{A} \cdot \mathbf{s} / \mathbf{V} \cdot \mathbf{m}$
η	Ionisationsgrad	-
Θ	Beugungswinkel	0
λ	Wellenlänge	nm
λ_{D}	Debye-Länge	μm
λ_{m}	Mittlere freie Weglänge	μm
ν	Einfallswinkel	0
ν_{P}	Poisson-Zahl	-
π	Pi	-
$\rho_{\rm i}$	Ionenstromdichte	A/m ²
ρ_{Pp}	Spitzenleistungsdichte	kW/cm ²
σ	Eigenspannung	GPa
Φ_P	Plasmapotential	V

Einheiten

Einheiten

А	Ampere
At%	Atomprozent
bar	Bar
с	Coulomb
eV	Elektronenvolt
g	Gramm
h	Stunde
Hz	Hertz
K	Kelvin
m	Meter
min	Minute
Ν	Newton
Pa	Pascal
S	Sekunden
sccm	Standardkubikzentimeter pro Minute
t	Tonnen
u	Atommasse
V	Volt
W	Watt
0	Grad
°C	Grad Celsius
%	Prozent

Prefixe

c	Centi	10 ²
G	Giga	10 ⁹
k	Kilo	10 ³
М	Mega	106
m	Mili	10-3
n	Nano	10-9
μ	Mikro	10-6