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Abstract

The global warming has reached tremendous dimensions in form of water scarcity and long droughts
periods [1]. Not only in the southern hemisphere, but also in Germany the average temperatures
raised since year 2000. There are several possibilities to mitigate the climate change and the effects
for humans on the world. Firstly, by reduction of energy consumption, food waste and mass-market
consumables which in turn require also energy for their production. Another possibility is the
application of Carbon Capture and Storage (CCS) technologies which has been scientifically
researched for several years at the institute of Energy Systems and Technology in Darmstadt. One of
the most promising technologies is the carbonate looping (CaL) process, due to the small efficiency
penalties in comparison to other CCS technologies. The Cal process at EST consists of two
interconnected circulating fluidized bed reactors in 1-MW scale, carbonator and -calciner
respectively [2]. The operation of such fluidized bed reactors in combustion and gasification
applications has been already industrialized to large scale however with little understanding of the
reactor gas-solid hydrodynamics. The process operation and sorbent behaviour in the context of CaL
process is even in a younger stage, aiming to up-scale the process to 20 MW size. There are only
limited experimental research works for large or semi-industrial test facilities available due to
operational challenges in terms of complexity and costly measurement apparatus for obtaining the
flow characteristics. The difficulties for the research arise in the complex hydrodynamics in fluidized
beds and the accurate prediction of thermoreactive gas-solid mixtures.

Nowadays, in the era of increasing computational hardware performance, numerical simulations that
are often referred as computational fluid dynamics (CFD) tools, have gained more attention. CFD
tools allow to reduce the number of experiments in order to optimize a process through shortening
the planning and construction time. Furthermore, the CFD results allow the evaluation of microscopic
and macroscopic flow field variables that are difficult to measure in experiments. For these reasons,
CFD tools are gaining fundamental importance to understand the phenomena taking place in fluidized
bed applications. There are two important methods for modelling gas-solid flows, namely the
Euler-Euler and Euler-Lagrange models. While for the first approach numerous works of circulating
fluidized bed (CFB) applications exist, the second approach is rather rarely used for the simulation of
large scale CFB units due to the high computational demand. This gives rise to this work, which is
focused on the development of a 3D numerical model for the carbonator. In the applied
Euler-Lagrange approach, the particle-particle and particle-wall collisions are computed by
deterministic algorithms by using the soft-sphere approach. In this approach two colliding partners
can overlap each other, leading to a penetration depth from which the collision force value during
collision is evaluated. A special emphasis lies in defining appropriate numerical settings to simulate
CFB systems at certain accuracy within a reasonable computational time. The gas-solid interactions
are mainly calculated by so-called drag models that are either based on theoretical or semi-empirical
models.



X Abstract

The objective of this work is to develop and evaluate a numerical model using the coupled
Euler-Lagrange method with deterministic particle tracking scheme (CFD-DEM) for the simulation of
the carbonator reactor in the CaL process. The particle-particle, particle-wall and particle-gas
interactions are modelled by a reduced tracking scheme. The numerical tracking scheme is simplified
in order to reduce the computational time that otherwise would result from the trajectory
computation of several billions of particles. The modelling approach applied here is known as coarse
graining method. In this approach so-called representative particles, called parcels, are tracked in the
domain. The parcel is a representative numerical particle with the same material properties such as
density and inner porosity as the real particles of the gas-solid system. The number of tracked particles
is reduced to a reasonable value below 1 million, which allowed to carry out simulations of the
carbonator within a reasonable time. The model development is carried out in three steps. In the first
step, simulations of a lab-scale spouted fluidized bed reactor are performed in order to understand
the effects of the restitution coefficient and tangential friction parameters during the collision
evaluation for two different fluidization velocities using the coupled CFD-DEM approach. The
advantage of the small-scale model gives the opportunity to evaluate the friction parameters and
restitution coefficient influence using high-speed camera recordings and derive the optimal values for
the larger scale simulations. In the second step, the coupled CFD-DEM model is applied to the
simulation of the cold flow circulating fluidized bed reactor that is a down-scaled reactor model of
the carbonator reactor of the 1 MWy, CaL plant. The cold flow 3-D circulating fluidized bed reactor
was simulated at three fluidization velocities, using sand and glass beads as inventories. The drag
models by Gidaspow and Energy Minimization Multiscale theory were applied to a polydisperse
numerical simulation and the results were validated by experimental capacitance probe
measurements of particle velocities and particle concentration. Furthermore, the reactor solid outflux,
the total pressure drop over the reactor, and relative static pressure in several reactor heights were
compared with experimental measurements. In the last step, the 1 MW carbonator was simulated
using appropriate numerical settings based on the previous gained modeling experience. The
numerical results were compared from long-term CaL tests using hard coal as fuel in the calciner.
Numerically, the influence between the mean Sauter diameter and a particle size distributions from
different extraction locations of the carbonator, for the numerical representation of the bed material,
is investigated. The results accuracy of a PSD particle simulation is higher than in a case of
monodisperse particle simulation. The numerical results of an implemented thermoreactive model
for the carbonation reaction are compared with gas concentrations measurements downstream the
cyclone and a complementary discussion using thermogravimetric analysis results of bed material
from long term test campaigns is carried out. The good agreement between numerical and
experimental results, as well as the computational efficiency of the 3D carbonator model in 1-MW
scale, suggests the employment of the developed model for scale-up of the Cal. process and other
fluidized bed applications.





