Lu Qian

Observer-Based Fault Detection and Estimation of Rolling Element Bearing Systems

Observer-Based Fault Detection and Estimation of Rolling Element Bearing Systems

Der Fakultät für Ingenieurwissenschaften der Abteilung Elektrotechnik und Informationstechnik der Universität Duisburg-Essen

zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften

vorgelegte Dissertation

von

Lu Qian

aus

Hunan, V.R. China

Datum der Einreichung: 17.12.2018

Berichte aus der Steuerungs- und Regelungstechnik

Lu Qian

Observer-Based Fault Detection and Estimation of Rolling Element Bearing Systems

Shaker Verlag Düren 2019

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available in the Internet at http://dnb.d-nb.de.

Zugl.: Duisburg-Essen, Univ., Diss., 2019

Copyright Shaker Verlag 2019 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the publishers.

Printed in Germany.

ISBN 978-3-8440-6698-2 ISSN 0945-1005

Shaker Verlag GmbH • Am Langen Graben 15a • 52353 Düren Phone: 0049/2421/99011-0 • Telefax: 0049/2421/99011-9 Internet: www.shaker.de • e-mail: info@shaker.de

Contents

A	Abbreviation and notation			VI
1	Intr	oductio	on	1
	1.1	Backg	round and motivation	1
		1.1.1	Signal processing based fault diagnosis	2
		1.1.2	Model-based fault diagnosis techniques	3
	1.2	Objec	tives of the work	4
	1.3	Outlir	ne of the thesis	5
2	Fun	damen	tals of rolling element bearings	9
	2.1	Types	of rolling element bearings	9
	2.2	Rollin	g element bearings components and geometry $\ldots \ldots \ldots \ldots$	9
		2.2.1	Components of rolling element bearings	10
		2.2.2	Geometry of rolling element bearings	12
	2.3	Bearin	ng kinematics and fault characteristic frequencies $\ \ldots \ \ldots \ \ldots \ \ldots$	12
	2.4	Dynai	nic modeling of a rolling element bearing system $\ldots \ldots \ldots \ldots$	15
		2.4.1	Dynamic model of rolling element bearing in fault free case	16
		2.4.2	Localized fault modeling of rolling element bearing	20
		2.4.3	Numerical examples and model validation	22
	2.5	Concl	uding remarks	25
3	Vib	ration s	signal analysis techniques for bearing faults	29
	3.1	Time	domain analysis	29
		3.1.1	Time domain parameters	30
		3.1.2	Adaptive signal processing	31
	3.2	Frequ	ency domain analysis	34
	3.3	Time-	frequency domain analysis	37
		3.3.1	Wavelet analysis	37
		3.3.2	Empirical mode decomposition	38
		3.3.3	Minimum entropy deconvolution technique	42

	3.4	Concluding remarks	44
4	Мо	del-based fault estimation for rolling element bearing systems	47
	4.1	A simplified model of rolling element bearing systems	48
	4.2	System identification of rolling element bearing	50
	4.3	\mathcal{H}_2 observer-based fault estimation for bearing systems $\ldots \ldots \ldots \ldots$	53
		4.3.1 \mathcal{H}_2 optimal observer	53
		4.3.2 Estimation of energy level of the fault force	55
	4.4	Experimental examples	60
	4.5	Concluding remarks	64
5	Ada	ptive observer-based residual generator design for bearing systems	67
	5.1	Problem formulation	67
	5.2	Preliminaries	68
		5.2.1 Diagnostic observer	68
		5.2.2 Parity space scheme	70
		5.2.3 Interconnections between DO and PS schemes	71
	5.3	Adaptive observer-based residual generator	73
		5.3.1 Design of LS observer gain	73
		5.3.2 The adaptive residual generator scheme	74
	5.4	An experimental example	79
	5.5	Concluding remarks	81
6	Blin	d identification with application to bearing fault data fusion	83
	6.1	Preliminaries on blind identification and problem formulation	84
		6.1.1 Blind system identification	84
		6.1.2 Problem formulation	85
	6.2	Characteristic polynomials identification	87
	6.3	Numerator polynomial matrices identification	90
		6.3.1 Identification for the hybrid transfer matrix	90
		6.3.2 Identification for each channel transfer matrices	94
	6.4	A numerical example	96
	6.5	Concluding remarks	102
7	Con	clusions and future work 1	03
Bi	bliog	raphy 1	05

List of Figures

1.1	Basic model-based fault diagnosis scheme [24]	4
1.2	Organization of the chapters	7
2.1	Classification of rolling element bearings	10
2.2	Components of rolling element bearings	11
2.3	Vibration model of rolling element bearing	17
2.4	Load distribution of rolling element bearing under radial force	19
2.5	Simulated bearing vibration signals with outer race fault: (a) time-domain waveform and (b) frequency spectrum	<u> </u>
2.6	Simulated bearing vibration signals with inner race fault: (a) time-domain waveform and (b) frequency spectrum	23
2.7	Measured bearing vibration signals with outer race fault: (a) time-domain waveform and (b) frequency spectrum	24
2.8	Measured bearing vibration signals with inner race fault: (a) time-domain waveform and (b) frequency spectrum	25
2.9	Envelope spectrum of bearing vibration signals: (a) measured signal with inner race fault; (b) measured signal with outer race fault; (c) simulated signal with inner race fault; (d) simulated signal with outer race fault	26
3.1	Adaptive filter configurations	32
3.2	Bearing vibration signals denoise by an adaptive filter	34
3.3	Bearing vibration signals processing by envelope analysis	36
3.4	Signal decomposition by EMD	41
3.5	Signal reconstruction by combining IMFs c_2 - c_4	41
3.6	Schematic of MED filering process	43
3.7	Bearing vibration signals processing by MED filer	44
4.1	Model-based fault estimation for bearings	47
4.2	Simplified model of rolling element bearings	48
4.3	Reconstructed impulse fault force	57

4.4	(a) Fault force input of bearing system; (b) output signal of bearing system;
	(c) residual signal
4.5	Energy level of input and residual signal
4.6	Input and estimation of input 59
4.7	CWRU bearing test rig [73]
4.8	Output signal and residual signal 61
4.9	System identification based on FRF measurements
4.10	Energy level of residual signal and estimated impulse fault force 62
4.11	Energy level of residual signal and estimated impulse fault force in different
	fault cases
4.12	Energy level of residual signal and estimated impulse fault force in different
	speed cases
5.1	Output signal in the fault-free case
5.2	Residual signal in the fault-free case
5.3	Estimated parameters
5.4	Fault force signal 78
5.5	Output signal in the fault case
5.6	Residual signal in the fault case
5.7	Output signal in the fault-free case
5.8	Residual signal in the fault-free case
5.9	Estimated parameters 80
5.10	Output signal in the fault case
5.11	Residual signal in the fault case
6.1	Insect simple 07
0.1	
0.2	Output signals
6.3	Identification performance against noise $\dots \dots \dots$
6.4	Comparison of original signal $y_2(k)$ and synthetic signal $y_2(k)$ in time domain 100
6.5	Comparison of original signal $y_2(k)$ and synthetic signal $\hat{y}_2(k)$ in frequency
	domain

List of Tables

2.1	Description of variables and parameters in the model (2.21) - (2.24)	18
2.2	Parameters of bearing for simulation	24
4.1	Parameters of Bearing Type 6205-2RSL JEM SKF in mm	62
4.2 6.1	The comparison of the true transfer functions and estimated transfer functions	99

List of Notations

Abbreviations

Abbreviation	Expansion
ALE	adaptive line enhancer
ANC	adaptive noise cancellation
ANNs	artificial neural networks
ARMA	autoregressive moving average
BPFI	ball pass frequency on the inner race
BPFO	ball pass frequency on the outer race
BSF	ball/roller spin frequency
DO	diagnostic observer
DOF	degree of freedom
EEMD	empirical mode decomposition
EHL	elastohydrodynamic lubrication
EMD	ensemble empirical mode decomposition
FD	fault detection
FDD	fault detection and diagnosis
FDF	fault detection filter
FDI	fault detection and isolation
FE	fault estimation
FFT	fast Fourier transform
FIR	finite impulse response
FRF	frequency response function
FTF	fundamental train frequency
IMF	intrinsic mode function
LCF	left coprime factorization
LMS	least mean squares
LTI	linear time-invariant
LS	least square
MED	minimum entropy deconvolution
PS	parity space

RMS	root mean square
SANC	self-adaptive noise cancellation
SISO	single-input single-output
SNR	signal-to-noise ratio
STFT	short-time Fourier transform
SVD	singular value decomposition
SVM	support vector machine
WT	wavelet transform
WPT	wavelet packet transform

Mathematical notations

Notation	Description
\forall	for all
\in	belong to
\approx	approximately equal
\neq	not equal
:=	defined as
\Rightarrow	imply
\iff	equivalent to
lim	limit of a function
$\max(\min)$	maximum (minimum)
•	Euclidean norm of a vector
$ \cdot _2$	\mathcal{L}_2 norm of a signal
\hat{x}	estimate of the state vector x
X^T	transport of X
X^{-1}	inverse of X
X > 0	\boldsymbol{X} is positive definite matrix
X^*	complex conjugate transpose of \boldsymbol{X}
X^{\perp}	orthogonal complement of \boldsymbol{X}
$\operatorname{rank}(X)$	rank of X
$\det(X)$	determinant of X
$\operatorname{col}(X)$	column-wise re-ordering of \boldsymbol{X}
tr(X)	trace of X
Re(X)	real part of X
\mathcal{R}^n	space of n -dimensional vectors
$\mathcal{R}^{n imes m}$	space of n by m matrices

Abbreviation and notation

$I_{m \times m}$	m by m identity matrix
$\delta(t)$	unit impulse
g * f	convolution of g and f
\otimes	Kronecker product
\mathcal{RH}_∞	the set of all stable transfer matrices