Optische Hochfrequenztechnik und Photonik

Herausgeber: B. Schmauß

Lalitha Pakala

Kalman Filtering for Mitigation of Optical Fiber Transmission Impairments

FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG

Kalman Filtering for Mitigation of Optical Fiber Transmission Impairments

Kalman Filterung zur Unterdrückung von Störeinflüssen bei der faseroptischen Übertragung

Der Technischen Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg zur Erlangung des Doktorgrades

Doktor-Ingenieur (Dr.-Ing.)

vorgelegt von

Lalitha Pakala

aus Nellore

Als Dissertation genehmigt von der Technischen Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg

Tag der mündlichen Prüfung :	28. February 2019
Vorsitzender des Promotionsorgans :	Prof. DrIng. Reinhard Lerch
Gutachter :	Prof. DrIng. Bernhard Schmauss
	Prof. DrIng. Norbert Hanik

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available in the Internet at http://dnb.d-nb.de.

Zugl.: Erlangen-Nürnberg, Univ., Diss., 2019

Copyright Shaker Verlag 2019 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the publishers.

Printed in Germany.

ISBN 978-3-8440-6662-3 ISSN 1866-6043

Shaker Verlag GmbH • Am Langen Graben 15a • 52353 Düren Phone: 0049/2421/99011-0 • Telefax: 0049/2421/99011-9 Internet: www.shaker.de • e-mail: info@shaker.de Optische Hochfrequenztechnik und Photonik

Lalitha Pakala

Kalman Filtering for Mitigation of Optical Fiber Transmission Impairments

D 29 (Diss. Universität Erlangen-Nürnberg)

Shaker Verlag Düren 2019

Abstract

Coherent optical communication systems offer great capability to transmit high data throughput, in order to accommodate the ever increasing data traffic. The advent of coherent detection aided with digital signal processing (DSP) has been one of the major technology breakthroughs that made it possible to multiply the spectral efficiency several times and also to compensate the fiber transmission impairments electronically. However, the nonlinear Kerr effect and its interplay with the amplified spontaneous emission (ASE) noise resulting in the nonlinear phase noise (NLPN), are still a bottleneck restricting the maximum possible transmission reach and capacity. In addition, equalization of the polarization effects as well as the phase and frequency offsets between the transmitter laser and the local oscillator (LO) is also crucial when employing higher order modulation formats and multiplexing techniques. Therefore, efficient DSP algorithms are under active research over the past decade.

In this thesis, the potential of Kalman filtering is exploited for the joint mitigation of several optical transmission impairments including laser phase noise, fiber nonlinearity, amplitude noise, frequency offset as well as polarization effects. A carrier phase and amplitude noise estimation (CPANE) algorithm is proposed and implemented using an extended Kalman filter (EKF) that estimates a complex quantity to track the phase and amplitude noise, simultaneously. Although, various DSP algorithms have been studied in this thesis, more emphasis will be given to the EKF-CPANE algorithm. Its performance is investigated in detail and compared to the conventional DSP algorithms. Approaches to enhance the nonlinear tolerance of the EKF-CPANE algorithm by incorporating with the existing techniques like digital backward propagation (DBP) will be presented. A two stage EKF approach is introduced that exhibits an improved tolerance towards phase and frequency offsets. Furthermore, an adaptive and cascaded Kalman filtering (CKF) is proposed for the joint tracking of polarization state and phase noise. A brief analysis on incorporating forward error correction (FEC) with the EKF-CPANE algorithm is also discussed. Extensive numerical investigations prove that the Kalman filters offer an attractive solution to jointly compensate several optical transmission impairments and thereby, enhance the transmission performance. Moreover, owing to their real-time feasibility and low complexity, Kalman filters seem to be a promising component of future coherent receivers.

Zusammenfassung

Kohärente optische Übertragungsssysteme bieten die Möglichkeit eines hohen Datendurchsatzes und damit auch das Potenzial, dem ständig wachsenden Datenverkehr gerecht zu werden. Das Aufkommen kohärenter Detektion in Verbindung mit der digitalen Signalverarbeitung (DSP) war einer der wichtigsten technologischen Durchbrüche, die es möglich gemacht haben, die spektrale Effizienz zu vervielfachen und auch die Störeinflüsse bei der Faserübertragung elektronisch zu kompensieren. Der nichtlineare Kerr-Effekt und sein Zusammenspiel mit dem Rauschen der verstärkten spontanen Emission (ASE), das zu dem nichtlinearen Phasenrauschen (NLPN) führt, sind jedoch immer noch ein Faktor, der die maximal mögliche Übertragungsreichweite und-kapazität einschränkt. Zusätzlich ist ein Ausgleich der Polarisationseffekte sowie der Phasen- und Frequenzversätze zwischen dem Senderlaser und dem lokalen Oszillator (LO) entscheidend, wenn Modulationsformate höherer Ordnung und Multiplextechniken verwendet werden. Daher wurden effiziente DSP Algorithmen in der letzten Dekade aktiv erforscht.

In dieser Arbeit wird das Potenzial der Kalman Filterung zur gemeinsamen Abschwächung mehrerer Beeinträchtigungen bei der optischen Übertragung, einschliesslich Laserphasenrauschen, Faser Nichtlinearität, Amplitudenrauschen, Frequenzversatz sowie Polarisationseffekte genutzt. Ein Algorithmus zur Trägerphasen und Amplitudenrauschschätzung (CPANE) wird vorgeschlagen und implementiert. Dabei wird ein erweitertes Kalman Filters (EKF) eingesetzt, das eine komplexe Grösse schätzt, um die Phase und Amplitudenrauschen gleichzeitig zu verfolgen. Obwohl in dieser Arbeit verschiedene DSP-Algorithmen untersucht wurden, wird der EKF-CPANE Algorithmus stärker betont. Seine Leistung wird detailliert untersucht und mit den herkömmlichen DSP-Algorithmen verglichen. Ansätze zur Verbesserung der nichtlinearen Toleranz des EKF-CPANE Algorithmus durch Integration in bestehende Techniken wie die digitale Rückwärtspropagation (DBP) werden vorgestellt. Ein zweistufiger EKF-Ansatz wird eingeführt, der eine verbesserte Toleranz gegenüber Phasen- und Frequenzversätzen aufweist. Darüber hinaus wird eine adaptive und kaskadierte Kalman-Filterung (CKF) zur gemeinsamen Verfolgung von Polarisationszustand und Phasenrauschen vorgeschlagen. Eine kurze Analyse zur Integration einer Vorwärtsfehlerkorrektur (FEC) mit dem EKF-CPANE Algorithmus wird ebenfalls diskutiert. Umfangreiche numerische Untersuchungen belegen, dass die Kalman Filter eine attraktive Lösung bieten, um verschiedene störende Effekte bei der optischen Übertragung gemeinsam zu kompensieren und dadurch die Übertragungsleistung zu verbessern. Aufgrund ihrer geringen Komplexität und Umsetzbarkeit in Echtzeit scheinen Kalman Filter eine vielversprechende Komponente zukünftiger kohärente Empfängerkonzepte zu sein.

Acknowledgements

I would like to express my sincere gratitude to many people who have supported me during my doctoral research study and steered me towards successful completion of my dissertation. First and foremost, I would like to express my heartfelt gratitude to my supervisor Prof. Dr.-Ing. Bernhard Schmauss for his valuable guidance and consistent encouragement throughout my research studies. His enthusiasm as well as openness to innovation and tackling new challenges has provided me the wonderful opportunity to come up with the thesis topic. Besides his broad knowledge, his kind and ever friendly nature has helped to persistently carry out my research work to the end.

My grateful thanks to Prof. Dr.-Ing. Hans Poisel and Prof. Dr.-Ing. Olaf Ziemann from Technische Hochschule (TH) Georg Simon Ohm, Nuremberg, for providing me the academic support for four years through the graduate program Optika² and the graduate study group Fiber Optic Transmission and Sensing (FiTS).

My sincere gratitude to Prof. Dr.-Ing. Norbert Hanik from the Technical University of Munich for reviewing my thesis as well as for his insightful comments.

I would like to express my sincere gratitude to Dr. Henning Buelow for providing me the opportunity to validate the algorithms developed in this thesis with experimental data as well as for the insightful technical discussions.

I appreciate the academic support provided by the Erlangen Graduate School in Advanced Optical Technologies (SAOT) as well as their interdisciplinary programs to promote innovation and leadership in the field of optics.

I would like to appreciate the support of my colleagues Felix Distler, Alexander Schimpel and Jan Schür. I take this opportunity to thank all the colleagues from the Institute of Microwaves and Photonics (LHFT) for their support and providing a pleasant working atmosphere. In addition, I would like to thank my former colleagues Chien Yu Lin, Hussein Al-Hashimi and Rameez Asif for their support and sharing their experiences in both work and life.

My heartfelt thanks to my husband Sudhir, for his continuous support and encouragement throughout my doctoral study. Without his consistent help and care, it would have been difficult to complete my dissertation. My loving thanks to my adorable daughter Lasya who has been a great source of joy and strength. Last but not least, my special thanks to my parents Kameswari and Kameswara Rao, as well as my sister Vijaya Lakshmi, for their moral support and consistent encouragement throughout my life. Without their everlasting support, my dissertation would not have come to a successful completion.

V

Lalitha Pakala, October 2018

Contents

Abst	ract		
Zusa	mmenfass	ung	III
Ackn	owledgem	ents	v
Listo	of Abbrevia	ations	XI
Listo	of Figures		xv
List o	of Tables)	αx
1 In	troduction		1
1. 1. 1. 2 Di	1 Backgro 2 Motivat 3 Thesis (gital Signa	and	1 2 3 5
2.:	1 Advanc 2.1.1 . 2.1.2 (2 Fiber Tr 2.2.1 1 2.2.2 1 2.2.2 1 2.2.2 1 2.2.3 1	ed Modulation Formats and Coherent Detection	5 5 7 8 8 9 9 10 10 10 10 11 11 11
2.3	2.2.4 2 3 DSP for 2.3.1 2	Laser Phase Noise	11 12 12 12

			Polarization Mode Dispersion (PMD) Compensation	12
		2.3.2	Nonlinear Compensation Techniques	13
			DBP Algorithm	13
		2.3.3	Carrier Phase Estimation (CPE)	15
	2.4	Summ	nary	15
3	Non	linear	Mitigation using Carrier Phase Estimation	16
	3.1	Carrie	r Phase Estimation (CPE) Techniques	16
		3.1.1	Blind or NDD CPE Techniques	17
			Viterbi-Viterbi (VV) CPE	17
			QPSK Partitioning	18
			Modulation Format Independent CPE or Universal-CPE (U-CPE)	19
		3.1.2	DD-CPE Techniques	20
			Feed-forward DD-CPE	20
			Decision Directed Phase Locked Loop (DD-PLL)	20
			Improved DD-CPE (IMP-DD-CPE)	21
		3.1.3	K-Means Clustering (KMC)	22
	3.2	Simul	ation Model and Parameters	24
	3.3	CPE T	Cechniques for Mitigation of Laser Phase Noise and Fiber Nonlinearity	24
		3.3.1	CPE Combined with DBP for Nonlinear Mitigation	25
		3.3.2	Impact of DBP Step Size on the Performance of U-CPE	27
			Nonlinear and Phase Noise Tolerance of DBP vs. CPE	29
		3.3.3	CPE Combined with Linear Compensation for Nonlinear Mitigation	29
			Nonlinear Mitigation using DD-CPE vs. U-CPE	29
		224	Nonlinear Mitigation using LCPE and KMC	21
		5.5.4	Single Channel Systems	31
			WDM Systems	34
	34	Limita	ations of CPE	35
	3.5	Introd	luction to Carrier Phase and Amplitude Noise Estimation (CPANE) Algorithm	36
	3.6	Summ	ary	37
4	Car	rior Ph	ase and Amplitude Noise Estimation using Extended Kalman Filtering	38
-	oun			
	4.1	The K	alman Filter	38
		4.1.1	Background	38
		4.1.2	Principles of Kalman Filtering	39
			System and Observation Model	40
			Assumptions	40
				41
		412	The Kalman Filtering Idea	42
		4.1.3	Derivation of Discrete-time Kaiman Filter Algorithm	43
			Treatchon Step	43
			Update Step	44
		414	A dentive Velman Filtering (AVE)	40
		4.1.4	Evtended Kalman filtering (EKE)	40 70
		ч.1.5	FKF Recursive Equations	-±7 40
		416	Unscented Kalman Filtering (IJKF)	52
		1.1.0	Principles of UKF.	52
				52

4.2 Principles and Implementation of CPANE Algorithm using EKF 54 4.3 Impact of Measurement Noise Covariance on the Performance of EKF-CPANE 55 4.3.1 Simulation Model 58 4.4 BTB and Transmission Performance of EKF-CPANE 59 4.4.1 BTB Scenario 59 4.4.2 Transmission Scenario 60 4.5 Summary 61 5 Performance Analysis of EKF-CPANE for Single Channel and WDM Systems 62 5.1 Single Channel Systems 62 5.1.1 BTB Performance 62 5.1.2 Transmission Performance 62 5.2.1 Transmission Performance 66 5.2.2 Transmission Performance of EKF-CPANE 66 5.2.3 Impact of XPM on the Performance of EKF-CPANE 66 5.3 Weighted Innovation Approach (WIA) for EKF-CPANE 67 5.4 Summary 68 6 Performance of DBP and EKF-CPANE for Uncompensated Links 69 6.1.1 Single Channel Systems 72 6.2 Simulation Model 73 7.3 S			4.1.7 Summary of Kalman Filtering	54
4.3.1 Impact of Measurement Noise Covariance on the Performance of EKF-CPANE 57 4.3.2 Numerical Results 58 4.4.8 BTB and Transmission Performance of EKF-CPANE 59 4.4.1 BTB Scenario 59 4.4.2 Transmission Scenario 60 5 Summary 61 5 Interformance Analysis of EKF-CPANE for Single Channel and WDM Systems 62 5.1 Single Channel Systems 62 5.1.1 BTB Performance 64 Simulation Model 64 Numerical Results 64 Numerical Results 64 S.2.1 Simulation Model 64 Numerical Results 64 5.2.1 Simulation Model 66 5.2.2 Transmission Performance 66 5.2.3 Impact of XPM on the Performance of EKF-CPANE 67 5.4 Summary 68 6 Performance Enhancement of EKF-CPANE in Combination with DBP 69 6.1.1 Transmission Performance of DBP and EKF-CPANE for Uncompensated Links 69 6.1.2 Multichannel Systems 72 Concept of AO-CDBP 73 Simulation Model 74 6.1.3 Complexity Analysis 74		4.2	Principles and Implementation of CPANE Algorithm using EKF	54
4.3.1 Simulation Model 58 4.4.8 BTB and Transmission Performance of EKF-CPANE 59 4.4.1 BTB Scenario 59 4.4.1 BTB Scenario 60 5 Summary 61 5 Performance Analysis of EKF-CPANE for Single Channel and WDM Systems 62 5.1 Single Channel Systems 62 5.1.1 BTB Performance 64 Simulation Model 64 Numerical Results 64 5.2 Multichannel Systems 66 5.2.1 Simulation Model 64 5.2 Multichannel Systems 66 5.2.1 Simulation Model 66 5.2.2 Transmission Performance 66 5.2.3 Impact of XPM on the Performance of EKF-CPANE 66 5.3 Weighted Innovation Approach (WIA) for EKF-CPANE 67 5.4 Summary 68 6 Performance of DBP and EKF-CPANE for Uncompensated Links 69 6.1.1 Single Channel Systems 72 Concept of AO-CDBP 73 Simulation Model 74		4.3	Impact of Measurement Noise Covariance on the Performance of EKF-CPANE	57
4.3.2 Numerical Results 58 4.4 BTB and Transmission Performance of EKF-CPANE 59 4.4.1 BTB Scenario 60 4.5 Summary 61 5 Performance Analysis of EKF-CPANE for Single Channel and WDM Systems 62 5.1 Single Channel Systems 62 5.1.1 BTB Performance 64 5.1.2 Transmission Performance 64 5.2.1 Simulation Model 64 Numerical Results 64 5.2.1 Simulation Model 66 5.2.1 Simulation Model 66 5.2.1 Simulation Model 66 5.2.3 Impact of XPM on the Performance of EKF-CPANE 66 5.3 Weighted Innovation Approach (WIA) for EKF-CPANE 67 5.4 Summary 68 Performance Enhancement of EKF-CPANE in Combination with DBP 69 6.1.1 Single Channel Systems 72 6.1 Simulation Model 73 5.1.2 Simulation Model 73 73 53 Simulation Model 73 6.1.1 Single Channel Syst			4.3.1 Simulation Model	58
4.4 DTB and transmission Performance of EXF-CPANE 59 4.4.2 Transmission Scenario 60 5 Summary 61 5 Performance Analysis of EKF-CPANE for Single Channel and WDM Systems 62 5.1 Single Channel Systems 62 5.1.1 BTB Performance 62 5.1.1 BTB Performance 64 Simulation Model 64 Simulation Model 64 Simulation Model 64 Simulation Model 66 5.2.1 Simulation Model 66 5.2.1 Simulation Model 66 5.2.1 Simulation Model 66 5.2.2 Transmission Performance 66 5.2.3 Impact of XPM on the Performance of EKF-CPANE 67 5.4 Summary 68 6 6 Performance Enhancement of EKF-CPANE in Combination with DBP 69 6.1.1 Single Channel Systems 69 6.1.2 Multichannel Systems 72 Concept of AO-CDBP 73 73 Simulation Model 73 <t< th=""><th></th><th></th><th>4.3.2 Numerical Results</th><th>58</th></t<>			4.3.2 Numerical Results	58
4.4.1 DIB Scenario 99 4.4.2 Transmission Scenario 60 4.5 Summary 61 5 Performance Analysis of EKF-CPANE for Single Channel and WDM Systems 62 5.1 Single Channel Systems 62 5.1.1 BTB Performance 62 5.1.2 Transmission Performance 64 Simulation Model 64 Numerical Results 64 5.2 Multichannel Systems 66 5.2.3 Impact of XPM on the Performance of EKF-CPANE 66 5.2.3 Impact of XPM on the Performance of EKF-CPANE 67 5.4 Summary 68 6 Performance Enhancement of EKF-CPANE in Combination with DBP 69 6.1.1 Single Channel Systems 62 6.1.2 Multichannel Systems 72 Concept of AO-CDBP 73 73 Simulation Model 73 Numerical Results 74 6.1.3 Complexity Analysis 75 6.2 Transmission Performance of DBP and EKF-CPANE for Dispersion Compensated Links 76 <		4.4	BIB and Transmission Performance of EKF-CPANE	59
4.4.2 Transmission Scenario 60 4.5 Summary 61 5 Performance Analysis of EKF-CPANE for Single Channel and WDM Systems 62 5.1 Single Channel Systems 62 5.1.1 BTB Performance 64 Sinulation Model 64 Numerical Results 64 5.2 Multichannel Systems 66 5.2.1 Simulation Model 66 5.2.3 Impact of XPM on the Performance of EKF-CPANE 66 5.3 Weighted Innovation Approach (WIA) for EKF-CPANE 67 5.4 Summary 68 6 Performance of DBP and EKF-CPANE for Uncompensated Links 69 6.1.1 Single Channel Systems 69 6.1.2 Multichannel Systems 72 Concept of AO-CDBP 73 Simulation Model 73 Numerical Results 74 6.1.3 Complexity Analysis 75 6.2 Transmission Performance of DBP and EKF-CPANE for Dispersion Compensated Links 76 6.2.1 7 Kottannel Systems 72 Concept of AO-CDBP 73			4.4.1 B1B Scenario	59
4.3 Summary 61 5 Performance Analysis of EKF-CPANE for Single Channel and WDM Systems 62 5.1 Single Channel Systems 62 5.1.1 BTB Performance 62 5.1.2 Transmission Performance 64 Simulation Model 64 Numerical Results 64 5.2.1 Simulation Model 66 5.2.2 Transmission Performance 66 5.2.3 Impact of XPM on the Performance of EKF-CPANE 67 5.4 Summary 68 6 Performance Enhancement of EKF-CPANE in Combination with DBP 69 6.1 Transmission Performance of DBP and EKF-CPANE for Uncompensated Links 69 6.1.1 Single Channel Systems 72 Concept of AO-CDBP 73 Simulation Model 73 Numerical Results 74 6.1.3 Complexity Analysis 75 6.2 Transmission Performance of DBP and EKF-CPANE for Dispersion Compensated Links 76 6.2.1 SNL Mitigation 77 6.1.2 Complexity Analysis 75 77 6.2.3 Simulation Model		4 5	4.4.2 Iransmission Scenario	60
5 Performance Analysis of EKF-CPANE for Single Channel and WDM Systems 62 5.1 Single Channel Systems 62 5.1.1 BTB Performance 62 5.1.2 Transmission Performance 64 Simulation Model 64 Numerical Results 64 5.2 Multichannel Systems 66 5.2.1 Simulation Model 66 5.2.2 Transmission Performance 66 5.2.3 Impact of XPM on the Performance of EKF-CPANE 66 5.2.4 Summary 68 6 Performance Enhancement of EKF-CPANE in Combination with DBP 69 6.1.1 Single Channel Systems 69 6.1.2 Multichannel Systems 72 Concept of AO-CDBP 73 Simulation Model 73 Numerical Results 74 6.1.3 Complexity Analysis 75 6.2 Transmission Performance of DBP and EKF-CPANE for Dispersion Compensated Links 76 6.1.2 Multichannel Systems 72 74 6.1.3 Complexity Analysis 75 <td< th=""><th></th><th>4.5</th><th>Summary</th><th>61</th></td<>		4.5	Summary	61
5.1 Single Channel Systems 62 5.1.1 BTB Performance 62 5.1.2 Transmission Performance 64 Simulation Model 64 Numerical Results 64 5.2 Multichannel Systems 66 5.2.1 Simulation Model 66 5.2.2 Transmission Performance 66 5.2.3 Impact of XPM on the Performance of EKF-CPANE 66 5.3 Weighted Innovation Approach (WIA) for EKF-CPANE 67 5.4 Summary 68 6 Performance Enhancement of EKF-CPANE in Combination with DBP 69 6.1 Transmission Performance of DBP and EKF-CPANE for Uncompensated Links 69 6.1.1 Single Channel Systems 73 Simulation Model 73 73 Simulation Model 73 74 6.1.3 Complexity Analysis 75 6.2 Transmission Performance of DBP and EKF-CPANE for Dispersion Compensated Links 76 6.2.1 SNL Mitigation 77 6.2.3 Somplexity Analysis 75 6.2 Transmission Performance of DBP	5	Per	formance Analysis of EKF-CPANE for Single Channel and WDM Systems	62
5.1.1 BTB Performance 62 5.1.2 Transmission Performance 64 Simulation Model 64 Numerical Results 64 5.2 Multichannel Systems 66 5.2.1 Transmission Performance 66 5.2.2 Transmission Performance 66 5.2.3 Impact of XPM on the Performance of EKF-CPANE 66 5.3 Weighted Innovation Approach (WIA) for EKF-CPANE 67 5.4 Summary 68 6 Performance Enhancement of EKF-CPANE in Combination with DBP 69 6.1 Transmission Performance of DBP and EKF-CPANE for Uncompensated Links 69 6.1.1 Single Channel Systems 69 6.1.2 Multichannel Systems 72 Concept of AO-CDBP 73 73 Simulation Model 73 74 6.1.3 Complexity Analysis 75 6.2 Transmission Performance of DBP and EKF-CPANE for Dispersion Compensated Links 76 6.2.1 SNL Mitigation 77 6.2.3 South Mitigation 77 6.2.3 Complexity Analysis <th></th> <th>5.1</th> <th>Single Channel Systems</th> <th>62</th>		5.1	Single Channel Systems	62
5.1.2 Transmission Performance 64 Simulation Model 64 Numerical Results 64 5.2 Multichannel Systems 66 5.2.1 Simulation Model 66 5.2.2 Transmission Performance 66 5.2.3 Impact of XPM on the Performance of EKF-CPANE 66 5.3 Weighted Innovation Approach (WIA) for EKF-CPANE 67 5.4 Summary 68 6 Performance Enhancement of EKF-CPANE in Combination with DBP 69 6.1.1 Single Channel Systems 69 6.1.2 Multichannel Systems 72 Concept of AO-CDBP 73 Simulation Model 73 Simulation Model 73 8.1.1 Complexity Analysis 75 6.2 Transmission Performance of DBP and EKF-CPANE for Dispersion Compensated Links 76 6.2.1 SSNL Mitigation 77 6.2.2 Simulation Model 77 6.2.3 Complexity Analysis 79 7 Gouplexity Analysis 79 6.2.1 SSNL Mitigation 77 </th <th></th> <th></th> <th>5.1.1 BTB Performance</th> <th>62</th>			5.1.1 BTB Performance	62
Simulation Model 64 Numerical Results 64 5.2 Multichannel Systems 66 5.2.1 Simulation Model 66 5.2.2 Transmission Performance 66 5.2.3 Impact of XPM on the Performance of EKF-CPANE 66 5.3 Weighted Innovation Approach (WIA) for EKF-CPANE 67 5.4 Summary 68 6 Performance Enhancement of EKF-CPANE in Combination with DBP 69 6.1 Transmission Performance of DBP and EKF-CPANE for Uncompensated Links 69 6.1.1 Single Channel Systems 69 6.1.2 Multichannel Systems 72 Concept of AO-CDBP 73 Simulation Model 73 Numerical Results 74 6.1.3 Complexity Analysis 75 6.2 Transmission Performance of DBP and EKF-CPANE for Dispersion Compensated Links 76 6.2.1 SNL Mitigation 77 6.2.3 Complexity Analysis 79 6.3 Summary 79 6.3 Summary 79 7 Two Stage Kalman Filtering for Frequency Offse			5.1.2 Transmission Performance	64
Numerical Results 64 5.2 Multichannel Systems 66 5.2.1 Simulation Model 66 5.2.2 Transmission Performance 66 5.2.3 Impact of XPM on the Performance of EKF-CPANE 66 5.4 Summary 67 5.4 Summary 68 6 Performance Enhancement of EKF-CPANE in Combination with DBP 69 6.1 Transmission Performance of DBP and EKF-CPANE for Uncompensated Links 69 6.1.1 Single Channel Systems 69 6.1.2 Multichannel Systems 69 6.1.2 Multichannel Systems 72 Concept of AO-CDBP 73 Simulation Model 73 Numerical Results 74 6.1.3 Complexity Analysis 75 6.2 Transmission Performance of DBP and EKF-CPANE for Dispersion Compensated Links 76 6.2.1 SNL Mitigation 77 6.2.2 Simulation Model 77 6.3 Complexity Analysis 79 7 Two Stage Kalman Filtering for Frequency Offset and Phase Noise Tracking 81 <th></th> <th></th> <th>Simulation Model</th> <th>64</th>			Simulation Model	64
5.2 Multichannel Systems 66 5.2.1 Simulation Model 66 5.2.2 Transmission Performance 66 5.3 Impact of XPM on the Performance of EKF-CPANE 67 5.4 Summary 68 6 Performance Enhancement of EKF-CPANE in Combination with DBP 69 6.1 Transmission Performance of DBP and EKF-CPANE for Uncompensated Links 69 6.1.1 Single Channel Systems 62 6.1.2 Multichannel Systems 72 Concept of AO-CDBP 73 Simulation Model 73 Numerical Results 74 6.1.3 Complexity Analysis 75 6.2 Transmission Performance of DBP and EKF-CPANE for Dispersion Compensated Links 76 6.1.3 Complexity Analysis 75 6.2 Transmission Performance of DBP and EKF-CPANE for Dispersion Compensated Links 76 6.2.1 SNL Mitigation 77 6.2.3 Complexity Analysis 79 6.3 Summary 79 7 Model 77 6.2.3 Somplexity Analysis			Numerical Results	64
5.2.1 Simulation Model 66 5.2.2 Transmission Performance 66 5.2.3 Impact of XPM on the Performance of EKF-CPANE 66 5.3 Weighted Innovation Approach (WIA) for EKF-CPANE 67 5.4 Summary 68 6 Performance Enhancement of EKF-CPANE in Combination with DBP 69 6.1.1 Single Channel Systems 69 6.1.2 Multichannel Systems 69 6.1.3 Single Channel Systems 72 Concept of AO-CDBP 73 Simulation Model 73 Numerical Results 74 6.1.3 Complexity Analysis 75 6.2 Transmission Performance of DBP and EKF-CPANE for Dispersion Compensated Links 76 6.2.1 SSNL Mitigation 77 6.2.3 Complexity Analysis 79 7 6.2.3 Complexity Analysis 79 6.3 Summary 79 6.2 Simulation Model 77 6.2.3 Complexity Analysis 79 7 Wo Stage Kalman Filtering for Frequency Offset and Phase Noise Tracking		5.2	Multichannel Systems	66
5.2.2 Transmission Performance 66 5.2.3 Impact of XPM on the Performance of EKF-CPANE 66 5.3 Weighted Innovation Approach (WIA) for EKF-CPANE 67 5.4 Summary 68 6 Performance Enhancement of EKF-CPANE in Combination with DBP 69 6.1 Transmission Performance of DBP and EKF-CPANE for Uncompensated Links 69 6.1.1 Single Channel Systems 69 6.1.2 Multichannel Systems 72 Concept of AO-CDBP 73 Simulation Model 73 Numerical Results 74 6.1.3 Complexity Analysis 75 6.2 Transmission Performance of DBP and EKF-CPANE for Dispersion Compensated Links 76 6.2.1 SNL Mitigation 77 6.2.2 Simulation Model 77 6.2.3 Complexity Analysis 79 6.3 Summary 79 7 Two Stage Kalman Filtering for Frequency Offset and Phase Noise Tracking 81 7.1 Principles of Two Stage LKF/EKF 82 7.2 Simulation Model and Results 83			5.2.1 Simulation Model	66
5.2.3 Impact of XPM on the Performance of EKF-CPANE 66 5.3 Weighted Innovation Approach (WIA) for EKF-CPANE 67 5.4 Summary 68 6 Performance Enhancement of EKF-CPANE in Combination with DBP 69 6.1 Transmission Performance of DBP and EKF-CPANE for Uncompensated Links 69 6.1.1 Single Channel Systems 69 6.1.2 Multichannel Systems 72 Concept of AO-CDBP 73 Simulation Model 73 Numerical Results 74 6.1.3 Complexity Analysis 75 6.2 Transmission Performance of DBP and EKF-CPANE for Dispersion Compensated Links 76 6.2.1 SNL Mitigation 77 6.2.2 Simulation Model 77 6.2.3 Complexity Analysis 79 6.3 Summary 79 6.3 Summary 79 7 Two Stage Kalman Filtering for Frequency Offset and Phase Noise Tracking 81 7.1 Principles of Two Stage LKF/EKF 82 7.2 Simulation Model and Results 83 7.3			5.2.2 Transmission Performance	66
5.3 Weighted Innovation Approach (WIA) for EKF-CPANE 67 5.4 Summary 68 6 Performance Enhancement of EKF-CPANE in Combination with DBP 69 6.1 Transmission Performance of DBP and EKF-CPANE for Uncompensated Links 69 6.1.1 Single Channel Systems 69 6.1.2 Multichannel Systems 72 Concept of AO-CDBP 73 Simulation Model 73 Numerical Results 74 6.1.3 Complexity Analysis 75 6.2 Transmission Performance of DBP and EKF-CPANE for Dispersion Compensated Links 76 6.2.1 SSNL Mitigation 77 6.2.2 Simulation Model 77 6.3.3 Complexity Analysis 79 6.3 Summary 79 7 Two Stage Kalman Filtering for Frequency Offset and Phase Noise Tracking 81 7.1 Principles of Two Stage LKF/EKF 82 7.2 Simulation Model and Results 83 7.2.1 BTB Scenario 83 7.2.2 Transmission Performance 86 7.3 Sum			5.2.3 Impact of XPM on the Performance of EKF-CPANE	66
5.4 Summary 68 6 Performance Enhancement of EKF-CPANE in Combination with DBP 69 6.1 Transmission Performance of DBP and EKF-CPANE for Uncompensated Links 69 6.1.1 Single Channel Systems 69 6.1.2 Multichannel Systems 72 Concept of AO-CDBP 73 Simulation Model 73 Numerical Results 74 6.1.3 Complexity Analysis 75 6.2 Transmission Performance of DBP and EKF-CPANE for Dispersion Compensated Links 76 6.2.1 SSNL Mitigation 77 6.2.2 Simulation Model 77 6.2.3 Complexity Analysis 79 6.3 Summary 79 7 Mostage Kalman Filtering for Frequency Offset and Phase Noise Tracking 81 7.1 Principles of Two Stage LKF/EKF 82 7.2 Simulation Model and Results 83 7.2.1 BTB Scenario 83 7.2.2 Transmission Performance 86 7.3 Summary 87 8 Adaptive Cascaded Kalman Filtering for Polarizat		5.3	Weighted Innovation Approach (WIA) for EKF-CPANE	67
6 Performance Enhancement of EKF-CPANE in Combination with DBP 69 6.1 Transmission Performance of DBP and EKF-CPANE for Uncompensated Links 69 6.1.1 Single Channel Systems 69 6.1.2 Multichannel Systems 72 Concept of AO-CDBP 73 Simulation Model 73 Numerical Results 74 6.1.3 Complexity Analysis 75 6.2 Transmission Performance of DBP and EKF-CPANE for Dispersion Compensated Links 76 6.2.1 SSNL Mitigation 77 6.2.2 Simulation Model 77 6.2.3 Complexity Analysis 79 7 6.2.3 Complexity Analysis 79 6.3 Summary 79 7 Two Stage Kalman Filtering for Frequency Offset and Phase Noise Tracking 81 7.1 Principles of Two Stage LKF/EKF 82 7.2 Simulation Model and Results 83 7.2.1 BTB Scenario 83 7.2.2 Transmission Performance 86 7.3 Summary 87 8 Adaptive Cascad		5.4	Summary	68
6.1 Transmission Performance of DBP and EKF-CPANE for Uncompensated Links 69 6.1.1 Single Channel Systems 72 Concept of AO-CDBP 73 Simulation Model 73 Numerical Results 74 6.1.3 Complexity Analysis 75 6.2 Transmission Performance of DBP and EKF-CPANE for Dispersion Compensated Links 76 6.2.1 SSNL Mitigation 77 6.2.2 Simulation Model 77 6.2.3 Complexity Analysis 79 6.3 Summary 79 6.3 Summary 79 6.3 Summary 79 7 Two Stage Kalman Filtering for Frequency Offset and Phase Noise Tracking 81 7.1 Principles of Two Stage LKF/EKF 82 7.2 Simulation Model and Results 83 7.2.1 BTB Scenario 83 7.2.2 Transmission Performance 86 7.3 Summary 87 8 Adaptive Cascaded Kalman Filtering for Polarization State and Phase Noise Tracking 88 8.1 Principles of Adaptive Cascaded Kalma	6	Per	formance Enhancement of EKF-CPANE in Combination with DBP	69
6.1.1 Single Channel Systems 69 6.1.2 Multichannel Systems 72 Concept of AO-CDBP 73 Simulation Model 73 Numerical Results 74 6.1.3 Complexity Analysis 75 6.2 Transmission Performance of DBP and EKF-CPANE for Dispersion Compensated Links 76 6.2.1 SSNL Mitigation 77 6.2.2 Simulation Model 77 6.2.3 Complexity Analysis 79 6.3 Summary 79 6.3 Summary 79 6.3 Summary 79 7 Two Stage Kalman Filtering for Frequency Offset and Phase Noise Tracking 81 7.1 Principles of Two Stage LKF/EKF 82 7.2 Simulation Model and Results 83 7.2.1 BTB Scenario 83 7.2.2 Transmission Performance 86 7.3 Summary 87 8 Adaptive Cascaded Kalman Filtering for Polarization State and Phase Noise Tracking 88 8.1 Principles of Adaptive Cascaded Kalman Filtering (ACKF) 89 <		6.1	Transmission Performance of DBP and EKF-CPANE for Uncompensated Links	69
6.1.2 Multichannel Systems 72 Concept of AO-CDBP 73 Simulation Model 73 Numerical Results 74 6.1.3 Complexity Analysis 75 6.2 Transmission Performance of DBP and EKF-CPANE for Dispersion Compensated Links 76 6.2.1 SSNL Mitigation 77 6.2.2 Simulation Model 77 6.2.3 Complexity Analysis 79 6.3 Summary 79 6.3 Summary 79 6.3 Summary 79 7 Two Stage Kalman Filtering for Frequency Offset and Phase Noise Tracking 81 7.1 Principles of Two Stage LKF/EKF 82 7.2 Simulation Model and Results 83 7.2.1 BTB Scenario 83 7.2.2 Transmission Performance 86 7.3 Summary 87 8 Adaptive Cascaded Kalman Filtering for Polarization State and Phase Noise Tracking 88 8.1 Principles of Adaptive Cascaded Kalman Filtering (ACKF) 89 8.1.1 Adaptive Cascaded Kalman Filtering (ACKF)			6.1.1 Single Channel Systems	69
Concept of AO-CDBP 73 Simulation Model 73 Numerical Results 74 6.1.3 Complexity Analysis 75 6.2 Transmission Performance of DBP and EKF-CPANE for Dispersion Compensated Links 76 6.2.1 SSNL Mitigation 77 6.2.2 Simulation Model 77 6.2.3 Complexity Analysis 79 6.3 Summary 79 6.3 Summary 79 6.3 Summary 79 7 Two Stage Kalman Filtering for Frequency Offset and Phase Noise Tracking 81 7.1 Principles of Two Stage LKF/EKF 82 7.2 Simulation Model and Results 83 7.2.1 BTB Scenario 83 7.2.2 Transmission Performance 86 7.3 Summary 87 8 Adaptive Cascaded Kalman Filtering for Polarization State and Phase Noise Tracking 88 8.1 Principles of Adaptive Cascaded Kalman Filtering (ACKF) 89 8.1.1 Adaptive Cascaded Kalman Filtering (ACKF) 91 8.2 Simulation Model and Results <th></th> <th></th> <th>6.1.2 Multichannel Systems</th> <th>72</th>			6.1.2 Multichannel Systems	72
Simulation Model 73 Numerical Results 74 6.1.3 Complexity Analysis 75 6.2 Transmission Performance of DBP and EKF-CPANE for Dispersion Compensated Links 76 6.2.1 SSNL Mitigation 77 6.2.2 Simulation Model 77 6.2.3 Complexity Analysis 79 6.3 Summary 79 7 Two Stage Kalman Filtering for Frequency Offset and Phase Noise Tracking 81 7.1 Principles of Two Stage LKF/EKF 82 7.2 Simulation Model and Results 83 7.2.1 BTB Scenario 83 7.2.2 Transmission Performance 86 7.3 Summary 87 8 Adaptive Cascaded Kalman Filtering for Polarization State and Phase Noise Tracking 88 8.1 Principles of Adaptive Cascad			Concept of AO-CDBP	73
Numerical Results 74 6.1.3 Complexity Analysis 75 6.2 Transmission Performance of DBP and EKF-CPANE for Dispersion Compensated Links 76 6.2.1 SSNL Mitigation 77 6.2.2 Simulation Model 77 6.2.3 Complexity Analysis 79 6.3 Summary 79 7 Two Stage Kalman Filtering for Frequency Offset and Phase Noise Tracking 81 7.1 Principles of Two Stage LKF/EKF 82 7.2 Simulation Model and Results 83 7.2.1 BTB Scenario 83 7.2.2 Transmission Performance 86 7.3 Summary 87 8 Adaptive Cascaded Kalman Filtering for Polarization State and Phase Noise Tracking 88 8.1 Principles of Adaptive Cascaded Kalman Filtering (ACKF) 89 8.1.1 Adaptive Cascaded Kalman Filtering (ACKF) 91 8.2 Simulation Mod			Simulation Model	73
6.1.3 Complexity Analysis 75 6.2 Transmission Performance of DBP and EKF-CPANE for Dispersion Compensated Links 76 6.2.1 SSNL Mitigation 77 6.2.2 Simulation Model 77 6.2.3 Complexity Analysis 79 6.3 Summary 79 6.3 Summary 79 6.3 Summary 79 6.3 Summary 79 7 Two Stage Kalman Filtering for Frequency Offset and Phase Noise Tracking 81 7.1 Principles of Two Stage LKF/EKF 82 7.2 Simulation Model and Results 83 7.2.1 BTB Scenario 83 7.2.2 Transmission Performance 86 7.3 Summary 87 8 Adaptive Cascaded Kalman Filtering for Polarization State and Phase Noise Tracking 88 8.1 Principles of Adaptive Cascaded Kalman Filtering (ACKF) 89 8.1.1 Adaptive Cascaded Kalman Filtering (ACKF) 89 8.2 Simulation Model and Results 91			Numerical Results	74
6.2 Transmission Performance of DBP and EKF-CPANE for Dispersion Compensated Links 76 6.2.1 SSNL Mitigation 77 6.2.2 Simulation Model 77 6.2.3 Complexity Analysis 79 6.3 Summary 79 6.3 Summary 79 6.3 Summary 79 7 Two Stage Kalman Filtering for Frequency Offset and Phase Noise Tracking 81 7.1 Principles of Two Stage LKF/EKF 82 7.2 Simulation Model and Results 83 7.2.1 BTB Scenario 83 7.2.2 Transmission Performance 86 7.3 Summary 87 8 Adaptive Cascaded Kalman Filtering for Polarization State and Phase Noise Tracking 88 8.1 Principles of Adaptive Cascaded Kalman Filtering (ACKF) 89 8.1.1 Adaptive Cascaded Kalman Filtering (ACKF) 91 8.2 Simulation Model and Results 91			6.1.3 Complexity Analysis	75
6.2.1 SSNL Mitigation 77 6.2.2 Simulation Model 77 6.2.3 Complexity Analysis 79 6.3 Summary 79 6.3 Summary 79 6.3 Summary 79 7 Two Stage Kalman Filtering for Frequency Offset and Phase Noise Tracking 81 7.1 Principles of Two Stage LKF/EKF 82 7.2 Simulation Model and Results 83 7.2.1 BTB Scenario 83 7.2.2 Transmission Performance 86 7.3 Summary 87 8 Adaptive Cascaded Kalman Filtering for Polarization State and Phase Noise Tracking 88 8.1 Principles of Adaptive Cascaded Kalman Filtering (ACKF) 89 8.1.1 Adaptive Cascaded Kalman Filtering (ACKF) 91 8.2 Simulation Model and Results 91	6.2 Transmission Performance of DBP and EKF-CPANE for Dispersion Compensated Links .		76	
6.2.2 Simulation Model 77 6.2.3 Complexity Analysis 79 6.3 Summary 79 6.3 Summary 79 7 Two Stage Kalman Filtering for Frequency Offset and Phase Noise Tracking 81 7.1 Principles of Two Stage LKF/EKF 82 7.2 Simulation Model and Results 83 7.2.1 BTB Scenario 83 7.2.2 Transmission Performance 86 7.3 Summary 87 8 Adaptive Cascaded Kalman Filtering for Polarization State and Phase Noise Tracking 88 8.1 Principles of Adaptive Cascaded Kalman Filtering (ACKF) 89 8.1.1 Adaptive Cascaded Kalman Filtering (ACKF) 91 8.2 Simulation Model and Results 91			6.2.1 SSNL Mitigation	77
6.2.3 Complexity Analysis 79 6.3 Summary 79 6.3 Summary 79 7 Two Stage Kalman Filtering for Frequency Offset and Phase Noise Tracking 81 7.1 Principles of Two Stage LKF/EKF 82 7.2 Simulation Model and Results 83 7.2.1 BTB Scenario 83 7.2.2 Transmission Performance 86 7.3 Summary 87 8 Adaptive Cascaded Kalman Filtering for Polarization State and Phase Noise Tracking 88 8.1 Principles of Adaptive Cascaded Kalman Filtering (ACKF) 89 8.1.1 Adaptive Cascaded Kalman Filtering (ACKF) 91 8.2 Simulation Model and Results 91			6.2.2 Simulation Model	77
6.3 Summary 79 7 Two Stage Kalman Filtering for Frequency Offset and Phase Noise Tracking 81 7.1 Principles of Two Stage LKF/EKF 82 7.2 Simulation Model and Results 83 7.2.1 BTB Scenario 83 7.2.2 Transmission Performance 86 7.3 Summary 87 8 Adaptive Cascaded Kalman Filtering for Polarization State and Phase Noise Tracking 88 8.1 Principles of Adaptive Cascaded Kalman Filtering (ACKF) 89 8.1.1 Adaptive Cascaded Kalman Filtering (ACKF) 91 8.2 Simulation Model and Results 91			6.2.3 Complexity Analysis	79
7 Two Stage Kalman Filtering for Frequency Offset and Phase Noise Tracking 81 7.1 Principles of Two Stage LKF/EKF 82 7.2 Simulation Model and Results 83 7.2.1 BTB Scenario 83 7.2.2 Transmission Performance 86 7.3 Summary 87 8 Adaptive Cascaded Kalman Filtering for Polarization State and Phase Noise Tracking 88 8.1 Principles of Adaptive Cascaded Kalman Filtering (ACKF) 89 8.1.1 Adaptive Cascaded Kalman Filtering (ACKF) 91 8.2 Simulation Model and Results 91		6.3	Summary	79
7.1 Principles of Two Stage LKF/EKF 82 7.2 Simulation Model and Results 83 7.2.1 BTB Scenario 83 7.2.2 Transmission Performance 86 7.3 Summary 87 8 Adaptive Cascaded Kalman Filtering for Polarization State and Phase Noise Tracking 88 8.1 Principles of Adaptive Cascaded Kalman Filtering (ACKF) 89 8.1.1 Adaptive Cascaded Kalman Filtering (ACKF) 91 8.2 Simulation Model and Results 91				
7.2 Simulation Model and Results 83 7.2.1 BTB Scenario 83 7.2.2 Transmission Performance 86 7.3 Summary 87 8 Adaptive Cascaded Kalman Filtering for Polarization State and Phase Noise Tracking 88 8.1 Principles of Adaptive Cascaded Kalman Filtering (ACKF) 89 8.1.1 Adaptive Cascaded Kalman Filtering (ACKF) 91 8.2 Simulation Model and Results 91	7	Two	o Stage Kalman Filtering for Frequency Offset and Phase Noise Tracking	81
7.2.1 BTB Scenario 83 7.2.2 Transmission Performance 86 7.3 Summary 87 8 Adaptive Cascaded Kalman Filtering for Polarization State and Phase Noise Tracking 88 8.1 Principles of Adaptive Cascaded Kalman Filtering (ACKF) 89 8.1.1 Adaptive Cascaded Kalman Filtering (ACKF) 91 8.2 Simulation Model and Results 91	7	Twc 7.1	D Stage Kalman Filtering for Frequency Offset and Phase Noise Tracking Principles of Two Stage LKF/EKF	81 82
7.2.2 Transmission Performance 86 7.3 Summary 87 8 Adaptive Cascaded Kalman Filtering for Polarization State and Phase Noise Tracking 88 8.1 Principles of Adaptive Cascaded Kalman Filtering (ACKF) 89 8.1.1 Adaptive Cascaded Kalman Filtering (ACKF) 91 8.2 Simulation Model and Results 91	7	Two 7.1 7.2	o Stage Kalman Filtering for Frequency Offset and Phase Noise Tracking Principles of Two Stage LKF/EKF Simulation Model and Results	81 82 83
7.3 Summary 87 8 Adaptive Cascaded Kalman Filtering for Polarization State and Phase Noise Tracking 88 8.1 Principles of Adaptive Cascaded Kalman Filtering (ACKF) 89 8.1.1 Adaptive Cascaded Kalman Filtering (ACKF) 91 8.2 Simulation Model and Results 91	7	7.1 7.2	o Stage Kalman Filtering for Frequency Offset and Phase Noise Tracking Principles of Two Stage LKF/EKF Simulation Model and Results 7.2.1 BTB Scenario	81 82 83 83
8 Adaptive Cascaded Kalman Filtering for Polarization State and Phase Noise Tracking 88 8.1 Principles of Adaptive Cascaded Kalman Filtering (ACKF) 89 8.1.1 Adaptive Cascaded Kalman Filtering (ACKF) 91 8.2 Simulation Model and Results 91	7	7.1 7.2	• Stage Kalman Filtering for Frequency Offset and Phase Noise Tracking Principles of Two Stage LKF/EKF Simulation Model and Results 7.2.1 BTB Scenario 7.2.2 Transmission Performance	81 82 83 83 83
8.1 Principles of Adaptive Cascaded Kalman Filtering (ACKF) 89 8.1.1 Adaptive Cascaded Kalman Filtering (ACKF) 91 8.2 Simulation Model and Results 91	7	7.1 7.2 7.3	Principles of Two Stage LKF/EKF	81 82 83 83 86 87
8.1.1 Adaptive Cascaded Kalman Filtering (ACKF) 91 8.2 Simulation Model and Results 91	<u>7</u> 8	7.1 7.2 7.3 Ada	o Stage Kalman Filtering for Frequency Offset and Phase Noise Tracking Principles of Two Stage LKF/EKF Simulation Model and Results 7.2.1 BTB Scenario 7.2.2 Transmission Performance Summary Summary Aptive Cascaded Kalman Filtering for Polarization State and Phase Noise Tracking	81 82 83 83 86 87 88
8.2 Simulation Model and Results	<u>7</u>	Two 7.1 7.2 7.3 Ada 8.1	Principles of Two Stage LKF/EKF Simulation Model and Results 7.2.1 BTB Scenario 7.2.2 Transmission Performance Summary aptive Cascaded Kalman Filtering for Polarization State and Phase Noise Tracking Principles of Adaptive Cascaded Kalman Filtering (ACKF)	81 82 83 83 86 87 88 88 88
	8	Two 7.1 7.2 7.3 Ada 8.1	Principles of Two Stage LKF/EKF Simulation Model and Results 7.2.1 BTB Scenario 7.2.2 Transmission Performance Summary aptive Cascaded Kalman Filtering for Polarization State and Phase Noise Tracking Principles of Adaptive Cascaded Kalman Filtering (ACKF) 8.1.1 Adaptive Cascaded Kalman Filtering (ACKF)	 81 82 83 83 86 87 88 89 91

	8.3	Summary	94
9	Coc	le Aided EKF-CPANE	95
	9.1	Principles of CA-EKF-CPANE	95
	9.2	Numerical Validation of CA-EKF-CPANE	96
	9.3	Summary	97
10	Cor	clusions and Outlook	98
	10.1	Conclusions	98
		10.1.1 Summary of Major Contributions	98
	10.2	Outlook	100
A	open	dix A Experimental Validation of EKF-CPANE	101
Bi	bliog	raphy	103

List of Abbreviations

ACF	Auto correlation function
A-CKF	Adaptive cascaded Kalman filtering
ADC	Analog to digital converter
AKF	Adaptive Kalman filtering
AO	Amplitude dependent optimization
AO-CDBP	Amplitude dependent optimization of correlated digital backward propagation
ASE	Amplified spontaneous emission
A-SSFM	Asymmetric split step Fourier method
AWGN	Additive white Gaussian noise
BP	Backward propagation
BTB	Back-to-back
CA	Code aided
CA-EKF	Code aided extended Kalman filtering
CD	Chromatic dispersion
CDBP	Correlated digital backward propagation
CKF	Cascaded Kalman filtering
СМА	Constant modulus algorithm
CPE	Carrier phase estimation
CPANE	Carrier phase and amplitude noise estimation
CW	Continuous wave
DBP	Digital backward propagation
DBPSK	Differential binary phase shift keying
DCF	Dispersion compensating fiber
DD	Decision directed
DD-CPE	Decision directed carrier phase estimation
DD-PLL	Decision directed phase locked loop
DGD	Differential group delay
DQPSK	Differential quadrature phase shift keying
DSP	Digital signal processing

XII	
EDFA	Erbium doped fiber amplifier
EKF	Extended Kalman filter
EKF-CPANE	Extended Kalman filter-carrier phase and ampli- tude noise estimation
FDE	Frequency domain equalization
FEC	Forward error correction
FFT	Fast Fourier transformation

FDE	Frequency domain equalization
FEC	Forward error correction
FFT	Fast Fourier transformation
FIR	Finite impulse response
FO	Frequency offset
FOE	Frequency offset estimation
GVD	Group velocity dispersion
IDD-CPE	Ideal decision directed CPE
IDD-PLL	Ideal decision directed PLL
IEKF-CPANE	Ideal extended Kalman filtering CPANE
IFFT	Inverse fast Fourier transformation
IIR	Infinite impulse response
IMP-DD-CPE	Improved decision directed carrier phase estimation
КМС	K-means clustering
LKF	Linear Kalman Filter
LO	Local oscillator
LPF	Low pass filter
MIMO	Multiple input multiple output
ML	Maximum likelihood
MLSE	Maximum likelihood sequence estimation
MMA	Multi modulus algorithm
MMSE	Minimum mean squared error
MW	Measurement weight
MZM	Machzehnder modulator
NDD	Non decision directed
NLPN	Nonlinear phase noise
NLSE	Nonlinear Schroedinger equation
NZ-DSF	Nonzero dispersion shifted fiber
OBPF	Optical band pass filter
ODBP	Optimized digital backward propagation
OOK	On off keying

OSNR	Optical signal to noise ratio
OSPS	One step per span
PBC	Polarization beam combiner
PBS	Polarization beam splitter
PDM / PM	polarization division multiplexing / Polarization multiplexing
PLL	Phase locked loop
PMD	Polarization mode dispersion
PSK	Phase shift keying
QAM	Quadrature amplitude modulation
QPSK	Quadrature phase shift keying
SD-FEC	Soft decision forward error correction
SPM	Self phase modulation
SMF	Single mode fiber
SSMF	Standard single mode fiber
SSFM	Split step Fourier method
SSM	State space model
SSNL	Single step nonlinear
S-SSFM	Symmetric split step Fourier method
U-CPE	Universal CPE
UKF	Unscented Kalman filter
VV	Viterbi-Viterbi
VV-CPE	Viterbi-Viterbi carrier phase estimation
WDM	Wavelength division multiplexing
WIA	Weighted innovation approach
XPM	cross phase modulation

List of Figures

2.1 2.2	Constellation plots of square m-QAM signals	6
	sequence: OAM: quadrature amplitude modulation: EPG: electrical pulse generator: MZM:	
	MachZehnder modulator: CW: continuous wave: PBS: nolarization beam splitter: PBC: no-	
	larization beam combiner: PM: nolarization multipleving	6
23	polarization diverse coherent receiver with DSP module: PBS: polarization hear splitter I O:	0
2.5	local oscillator. LPE: low pass filter ADC: apalog-to-digital converter	7
2.4	focal oscillator, El P. low pass inter, ADC. analog-to-cirgital converter.	/ 0
2.4	Linear equalization with two blocks: CD componentian and MIMO filter for PMD compon	9
2.5	cation	12
2	Salloll	13
2.6	illustration of forward and backward propagation.	14
3.2	Generalized schematic diagram of (a) blind CPE (b) DD-CPE techniques.	18
3.3	Illustration of QPSK partitioning scheme for 16-QAM constellation.	18
3.5	Block diagram of feed-forward DD-CPE algorithm (see also [79])	20
3.6	Block diagram of DD-PLL.	21
3.7	Block diagram of the proposed IMP-DD-CPE algorithm [80].	21
3.8	Illustration of decision error occurrence considering the first quadrant of a 16-QAM constel-	
	lation; the high decision error probability region is marked in red [80]	22
3.9	Illustration of KMC algorithm. (a) The flow chart; (b) the first quadrant of a 16-QAM con-	
	stellation is considered.	23
3.10	Simulation model of PM-m-QAM 224 Gb/s transmission system with coherent receiver and	
	DSP.	24
3.11	DSP module for evaluating the combined performance of DBP and CPE.	25
3.12	(a) BER vs OSNR (0.1 dB/nm) for PM-4-QAM 224 Gb/s system over 1200 km of SSMF	
	transmission; (b) BER vs launch power for PM-4-QAM 224 Gb/s over 1200 km of SSMF	
	transmission (see also [78]).	26
3.13	(a) BER vs OSNR (dB/0.1 nm) for PM-16-QAM 224 Gb/s system over 800 km of SSMF	
	transmission; (b) BER vs Launch power for PM-16-QAM 224 Gb/s over 800 km of SSMF	
	transmission (see also [78]).	26
3.14	BER vs. number of DBP steps per fiber span; (a) comparison of PM-4-QAM and PM-16-	
	QAM signals at a launch power of 3 dBm (b) comparison of PM-16-QAM signal with launch	
	powers of 0 and 3 dBm [79]	28
3.15	Q-factor vs. launch power for PM-16-QAM signals over 800 km transmission; (a) without	
	linewidth (b) with linewidth of 100 kHz (c) with linewidth of 500 kHz [79]	30
3.16	Q-factor vs. launch power for the considered CPE methods employed after only linear com-	
	pensation for PM-4-QAM and PM-16-QAM signals [79].	30

3.17	Launch power vs BER for IMP-DD-CPE algorithm with different feedback delays, with and	
	without linewidth of 100 kHz [80]	31
3.18	Simulation setup for PM-16-QAM single channel system over 960 km SSMF transmission with DSP.	32
3.19	(a) Q-factor vs. launch power using DD-CPE, U-CPE and U-CPE + KMC after 960 km of SSMF transmission; (b) Constellation plot after U-CPE with dominant nonlinear phase noise	
3.20	(a) Q-factor vs. Launch power using U-CPE and U-CPE + KMC for single channel systems after 960 km SSMF transmission for different feedback delays of U-CPE; (b) Constellation plot after U-CPE with dominant nonlinear phase noise for a launch power of 3 dBm and	32
3.21	with a feedback delay of 50 symbol periods [81]	33
3.22	Simulation setup for PM-16-QAM WDM system over 960 km SSMF transmission with DSP.	35
3.23	Q-factor vs. number of WDM channels at 3 dBm launch power using DD-CPE, U-CPE and	
	KMC after 960 km SSMF transmission [81]	35
3.24	CPE signal model and limitations [63]	36
3.25	Recovered signal using CPANE and CPE [62,63].	37
4.1	Application of Kalman filter.	39
4.2	Block diagram of a linear dynamic system in state space notation.	40
4.3	Predictor-corrector structure of Kalman filter	43
4.4	The block diagram of discrete-time linear Kalman filter.	46
4.5	Summary of Kalman filter recursive equations.	47
4.6	Summary of EKF recursive equations.	51
4.7	(a) Input signal model to CPE [62,63]; (b) Input signal model to CPANE (see also [67])	54
4.8	Autocorrelation function of ψ	56
4.9	Block diagram of EKF-CPANE algorithm [63].	56
4.10	Simulation model of BTB PM-m-QAM 224 Gb/s transmission system with coherent receiver	
4.11	and DSP	58
	$R_k = 3 \times 10^{-4}$ [62].	58
4.12	BER vs. OSNR curves for PM-16-QAM signals after EKF-CPANE for different values of R_k [62].	59
4.13	OSNR penalty @ BER 10^{-3} vs. linewidth [62].	60
4.14	Simulation model of PM-16-QAM 224 Gb/s transmission system with coherent receiver and	
4.45		61
4.15	(a) BER vs. OSNR for 16-QAM at launch power 3 dBm. (b) BER vs. launch power for 16-QAM signals with 800 km SSMF transmission [62].	61
5.1	Simulation model of BTB PM-m-QAM 224 Gb/s transmission system with coherent receiver and DSP.	62
5.2	BER vs. OSNR curves for BTB performance using the considered CPE and CPANE algorithms. (a) 4-PM-QAM with laser linewidth of 1 MHz. (b) 16-PM-QAM with laser linewidth	
	of 500 kHz. (c) 64-PM-QAM with laser linewidth of 330 kHz [63].	63

5.3	Simulation model of 224 Gb/s PM-m-QAM coherent transmission with DSP module	64
5.4	Q-factor vs. launch power curves for the considered CPE and CPANE algorithms. (a) 4-PM-	
	QAM over 1920 km of SSMF transmission. (b) 16-PM-QAM over 960 km of SSMF transmis-	
	sion. (c) 64-PM-QAM over 480 km of SSMF transmission (see also [63]).	65
5.5	Simulation model of PM-16-QAM 9 channel WDM system.	66
5.6	(a) Q-factor vs. Launch power per channel for 9 channel WDM system after 1000 km SSMF	
	transmission; (b) Q-factor vs. number of WDM channels at 3 dBm launch power per channel	
	after 1000 km SSMF transmission [64]	67
5.7	Weighted innovation approach for EKF-CPANE. (a) The first quadrant of a 16-QAM constel-	
	lation with the high decision error probability region marked in red; (b) Q-factor vs. launch	
	power curves for PM-16-QAM over 960 km of SSMF transmission for the EKF, WIA-EKF and	
	IEKF-CPANE algorithms [63]	68
61	Cimultian model to avaluate the transmission performance of DPD and EVE CDANE	70
0.1	PED as lowed to evaluate the transmission performance of DBF and EKF-CFANE.	70
6.2	DER VS. launch power for PM-16-QAM after 960km of transmission over (a) SSMF (b) NZ-	70
()	DSF [63].	70
6.3	Contour plots of Q-ractor showing the influence of γ and step size for DBP employed prior	
	to EKF at a launch power of 3 dbm and transmission distance of 960 km; Left: SSMF and	71
6.4	(a) O (asternary DBB star size (as the combined rest(arrange of EVE CDANE and DBB st	/1
6.4	(a) Q-factor vs. DBP step size for the combined performance of EKF-CPANE and DBP at	
	Taunch power of 3 dBm and 960 km of SSMF/NZ-DSF transmission; (b) Launch power vs.	70
< E	transmission distance for SSIVIF transmission at a BER of 2×10^{-5} [65].	72
6.5	Simulation of discrete amplitude levels for 16-QAM constellation.	73
6.6	Simulation model of 224 GD/S PM-16-QAM WDM concrent transmission system over 960km	74
6.7	O-factor vs. launch power curves for 9-channel PM-16-OAM WDM transmission after 960	
	km SSMF transmission (a) comparison of CDBP and AO-CDBP (b) comparison of individual	
	and combined performance of AO-CDBP and EKF-CPANE [66].	75
6.8	O-factor vs. number of WDM channels after 960 km of SSMF transmission at launch power	
	of 3 dBm [66].	75
6.9	Simulation model of 224 Gb/s PM-16-OAM coherent transmission over DM link consisting	
	of SSMF and DCF [67]	77
6.10	BER as a function of launch power for 16-PM-OAM over DM link. Transmission link consists	
	of SSMF and DCF. (a) Transmission distance: 800 km (b) Transmission distance: 1200 km [67].	78
6.11	BER as a function of transmission distance for PM-16-OAM over DM link. Transmission link	
	consists of SSMF and DCF. (a) Launch power: 0 dBm (b) Launch power: 3 dBm [67].	79
7.1	Basic idea of two stage LKF/EKF scheme for the joint compensation of FO, phase and am-	
	plitude noise [69]	82
7.2	Block diagram of the proposed two stage LKF/EKF algorithm for the joint compensation of	
	FO, phase and amplitude noise [70]	83
7.3	(a) NMSE vs. OSNR curves for LKF and EKF after the first stage of FO estimation for a FO	
	of 1 GHz. (b) BER vs. OSNR curves for LKF and EKF after the residual FO compensation for	
	a FO of 1 GHz [69]	84
7.4	(a) Constellation plot with FO of 1 GHz; (b) constellation plot for LKF after FO compensation;	
	(c) constellation plot for EKF after FO compensation [69].	85

7.5	BER vs. OSNR curves for LKF and EKF after the residual FO and phase noise compensation	
	for a FO of 1 GHz and varying laser linewidth [69]	85
7.6	Simulation model of 224 Gb/s PM-16-QAM coherent transmission over 960 km SSMF trans-	
	mission with two stage compensation of FO, phase and amplitude noise using LKF/EKF [70].	86
7.7	(a) BER vs. launch power per channel for PM-16-QAM after 960 km of SSMF transmission	
	with and without FO of 1GHz, and LO linewidth of 100 kHz; (b) BER vs. transmission	
	distance for PM-16-QAM SSMF transmission at a launch power of 3 dBm, FO of 1 GHz and	
	LO linewidth of 100 kHz [70]	86
8.1	Structure of adaptive cascaded Kalman filtering (CKF) with EKF for phase estimation and	
	LKF for polarization tracking and adaptive estimation of $Q_{x/y,E}$ and $Q_{x/y,L}$. The subscripts	
	E and L denote the parameters of EKF and LKF, respectively. The superscript - denotes	
	prediction [68].	90
8.2	Q-factor vs. PRAF for BTB configuration with linewidth = 500 kHz and OSNR = 20 dB [68]	92
8.3	Q-factor vs. laser linewidth for BTB configuration with $PRAF = 1 Mrad/s$ and $OSNR = 20$	
	dB [68]	92
8.4	Q-factor vs. launch power curves for the considered algorithms after 800 km of transmission	
	for 28 Gbaud PM-16-QAM [68]	93
9.1	Block diagram of CA-EKF-CPANE	96
9.2	Block diagram of EKF-CPANE with decoding and error correction.	96
9.3	Flow chart of CA-EKF algorithm for error correction.	97

List of Tables

3.1	SSMF parameters used for simulations.	24
6.1	Fiber parameters used for simulations to evaluate the combined performance of DBP and EKF-CPANE for single channel systems.	70
6.2	Fiber parameters of SSMF and DCF used for simulations to evaluate the combined perfor- mance of SSNL and EKF-CPANE [67].	77
9.1	BER performance of CA-EKF-CPANE.	97