
Patrick Sendowski

Perspektive elektrische Luftfahrt

Vergleichsstudie zu elektrisch und hybrid betriebenen Regionalverkehrsflugzeugen

Perspektive elektrische Luftfahrt: Vergleichsstudie zu elektrisch und hybrid betriebenen Regionalverkehrsflugzeugen

Dissertation

zur Erlangung des akademischen Grades Doktoringenieur (Dr.-Ing.)

vorgelegt an der Technischen Universität Dresden Fakultät Maschinenwesen

eingereicht von
Patrick Sendowski
geboren am 25. Februar 1984 in Magdeburg

Betreuender Hochschullehrer: Prof. Dr.-Ing. Klaus Wolf

Dresden, März 2019

Berichte aus der Luft- und Raumfahrttechnik

Patrick Sendowski

Perspektive elektrische Luftfahrt

Vergleichsstudie zu elektrisch und hybrid betriebenen Regionalverkehrsflugzeugen

Shaker Verlag Aachen 2019

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: Dresden, Techn. Univ., Diss., 2018

Copyright Shaker Verlag 2019 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungs-anlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8440-6591-6 ISSN 0945-2214

Shaker Verlag GmbH • Postfach 101818 • 52018 Aachen Telefon: 02407 / 95 96 - 0 • Telefax: 02407 / 95 96 - 9 Internet: www.shaker.de • E-Mail: info@shaker.de

Für Linda und Mila.

Vorwort

Die vorliegende Arbeit entstand während meiner Tätigkeit als Promotionsstudent am Lehrstuhl für Luftfahrzeugtechnik der Technischen Universität Dresden. Die ausgezeichneten Rahmenbedingungen waren eine wesentliche Grundlage für den Erfolg der Arbeit. Mein besonderer Dank gilt meinem Doktorvater, Herrn Prof. Dr.-Ing. Klaus Wolf. Die zahlreichen fachlichen Diskussionen und Anregungen gaben wegweisende Impulse für meine Arbeit und darüber hinaus. Auch hat er durch seinen umfassenden Einsatz dieses Wunschthema überhaupt ermöglicht. Herrn Prof. Dr.-Ing. Peter Horst sei gedankt für die freundliche Übernahme der zweiten Begutachtung dieser Arbeit.

Für die initialen Denkanstöße zur Detaillierung des Themas danke ich Prof. Dr.-Ing. Jürgen Thorbeck. Ich danke ebenfalls allen Mitarbeitern des Instituts für Luft- und Raumfahrttechnik sowie der Fakultät Maschinenwesen der TU Dresden für interessante Diskussionen und Anregungen, die allesamt zur Arbeit beigetragen haben. Auch möchte ich Frau Prof. Dr. Erika Schuchardt für anregende interdisziplinäre Gespräche danken, die über Jahre hinweg den Weg zu dieser Arbeit geebnet haben.

Darüber hinaus gilt ein großer Dank meinem Arbeitgeber "The Boston Consulting Group", stellvertretend Dr. Philipp Gerbert. Mir die Möglichkeit zu geben, diese Promotionsarbeit über mein Wunschthema zu verfassen und mich dabei umfassend in verschiedenen Bereichen zu unterstützen, ist bei Weitem nicht selbstverständlich.

Einen besonderen Dank schulde ich meiner Mutter für die bewundernswerte Geduld bei monatelangen, akribischen Korrekturschleifen sowie meinem Vater für die intensive Prüfung aller logischen und inhaltlichen Zusammenhänge. Widmen möchte ich diese Arbeit meiner Frau Linda und meiner Tochter Mila. Diese Personen haben während der gesamten Promotionszeit nicht nur viele Entbehrungen für mich in Kauf genommen, sondern mich umfassend bei der Umsetzung unterstützt. Die Erfüllung dieses Herzenswunsches wäre ohne sie nie möglich gewesen.

Zusammenfassung

In den kommenden 25 Jahren sind in der zivilen Luftfahrt zur Erreichung der ambitionierten Emissionsziele bei gleichzeitigem globalen Wachstum deutliche Technologiesprünge erforderlich. Ein möglicher Weg, diese Fortschritte zu erzielen, ist die Nutzung von elektrischen Antrieben.

Die vorliegende Arbeit untersucht die Anwendbarkeit von elektrischen Antrieben für zivile Regionalverkehrsflugzeuge für eine Indienststellung im Zielzeitraum 2040-2045. Dazu werden 75 verschiedene Konfigurationen elektrischer Antriebe auf Entwurfsniveau miteinander verglichen. Hierfür werden die konventionellen Handbuchmethoden des Flugzeugentwurfs in einem parametrischen Gesamt-Entwurfsmodell erweitert, um damit auch Flugzeugkonfigurationen mit elektrischen Antrieben abzubilden.

Die Ergebnisse dieses Modells für die zu untersuchenden Konfigurationen anhand einer repräsentativen Beispielmission zeigen, dass elektrisch betriebene Regionalflugzeuge grundsätzlich in der Lage sein können, die gegebenen Missionsanforderungen zu erfüllen. Der Vergleich aller Gesamtentwürfe mittels der erweiterten Entwurfsmethode ergibt, dass insbesondere Konfigurationen mit Brennstoffzellen-basiertem Antrieb und flüssigem Wasserstoff als Energieträger eine vielversprechende Antriebsoption darstellen. Diese Konfigurationen emittieren bis zu 90% weniger CO_2 (Lebenszyklus) sowie 100% weniger NO_X als das konventionelle Referenz-Flugzeug. Hinsichtlich der direkten Betriebskosten ergibt sich ein Vorteil von ca. 15%. batteriebetriebene Antriebe weisen demgegenüber signifikante Massen- und Kostennachteile auf. Hybrid-Konfigurationen zeigen im Allgemeinen einen geringen Massen- und Kostennachteil gegenüber vergleichbaren Mono-Konfigurationen. Hier zeigt sich der Trend, dass Hybrid-Konfigurationen mit einem primären Antriebssystem hoher spezifischer Energie (z.B. wasserstoffbetriebene Antriebe) und einem sekundären Antriebssystem hoher spezifischer Leistung (z. B. konventionelle Turbowellentriebwerke) am ehesten Vorteile erzielen hinsichtlich Emissionen und direkten Betriebskosten.

Inhaltsverzeichnis

ΑI	bbildı	ıngsvei	rzeichnis	XVI
Ta	abelle	nverze	ichnis	XVIII
V	erzeic	hnis vo	on Abkürzungen und Formelzeichen	xx
1	Einl	eitung		1
	1.1 1.2		ration	
2	Einf	ührung	g und Forschungsstand	5
	2.1	Optio	nen emissionsarmer Luftfahrtantriebe	5
		2.1.1	Sofort-Ersatz Kraftstoffe (,Drop-in Fuels')	5
		2.1.2	Ersatz-Kraftstoffe (,Non-drop-in Fuels')	7
		2.1.3	Elektrische Antriebe	8
	2.2	Elektr	risch betriebene kommerzielle Verkehrsflugzeuge	9
		2.2.1	Historische Meilensteine elektrischer Luftfahrt	9
		2.2.2	Definition des ,elektrisch betriebenen Flugzeugs' und Abgrenzung	
			vom "More Electric Aircraft"	9
		2.2.3	Machbarkeit elektrischer Luftfahrt	10
	2.3		ologien elektrisch betriebener Luftfahrt	11
		2.3.1	Turboelektrische Antriebe	11
		2.3.2	Brennstoffzellen	
		2.3.3	Batterien	
		2.3.4	Angrenzende Technologien	
	2.4		oden des Flugzeugsentwurfs	19
		2.4.1	Allgemeine Methoden des Entwurfs von Verkehrsflugzeugen	
		2.4.2	Methoden des Entwurfs elektrisch betriebener Flugzeuge	19
3	Hau	ptteil	I: Definition von Optionenraum, Referenzmethode und Refe-	
	renz	flugze	ug	21
	3.1	Optio	nenraum	21
	3.2	Refere	enzmethode zum Entwurf konventioneller Flugzeuge	29
		3.2.1	Modul 1: Dimensionierung	
		3.2.2	Modul 2: Rumpf- und Kabinenauslegung	35
		3.2.3	Modul 3: Auslegung von Flügel und Hochauftriebssystemen	36

		3.2.4 N	Modul 4: Berechnung von Massen und Schwerpunkten	39
		3.2.5 N	Modul 5: Leitwerks- und Fahrwerksauslegung	41
			Modul 6: Entwurfsbewertung	44
	3.3	Entwurf	des Referenzflugzeugs	48
			Auswahl eines Referenzflugzeugs	48
			Ergebnisse der Referenzmethode für die ATR72-500	50
4	Hau	ıptteil II:	Entwurfsmethode zur Abbildung elektrischer und hybrider	
	Flug	gzeuge		5 3
	4.1		onfigurationen	53
			Gasturbinenbetriebene Konfigurationen (GT-JF und GT-LH2)	53
			Turboelektrische Konfigurationen (TE-JF und TE-LH2)	65
			Brennstoffzellenbetriebene Konfigurationen (FC-JF und FC-LH2)	79
			Batteriebetriebene Konfiguration (BAT)	85
	4.2		Konfigurationen (HYB)	95
			Methodik zur Vorentwurfs-Auswahl der Hybridisierungsgrade	95
			v e	101
			Anpassung des Entwurfsmodells zur Abbildung von Hybrid-Kon-	
		fi	igurationen	114
5	Hau		5 1 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	12 1
	5.1	_	h mit Entwurfsstudien	
	5.2		sdimensionen	
	5.3		ser-Vergleich	
	5.4		ger-Sensitivitäts-Analysen	
	5.5		Aufgliederung	
	5.6		ıfgliederung	
	5.7	Relative	Bewertung	142
6	Zus		• • • • • • • • • • • • • • • • • • • •	145
	6.1	Zusamm		145
	6.2	Untersuc	chungskritik	
	6.3	Weiterge	ehender Forschungsbedarf	149
Α	Anh	ang		15 1
	A.1		ihrende Erklärungen zum Forschungsstand	
			Historische Meilensteine der elektrischen Luftfahrt	
			Grundprinzipien der Machbarkeit elektrischer Luftfahrt	
			Vasserstoff als Energieträger	
			Vorteile turboelektrischer Antriebe	
			Arten von verteilten Antrieben	
			Power Paths Methode	
	A.2		zmethode	
		A.2.1 F	Parameter für Landung	158

	A.2.2	Parameter für Start	159
		Propellerwirkungsgrad η_P	
		Parameter für Steigflug im 2. Segment	
		Parameter für Steigflug nach Durchstarte-Manöver	
		Parameter für Reiseflug	
		Parameter zur Abschätzung der maximalen Startmasse m_{MTO}	
		Parameter für Rumpf- und Kabinenauslegung	
		Parameter für Flügelauslegung	
		Auswahl der Hochauftriebshilfen	
		Berechnung der Massen	
		Berechnung des Schwerpunktes	
		Leitwerksauslegung	
		Auslegung des Fahrwerks	
		Berechnung der Parameter für die Widerstandspolare	
		Berechnung der direkten Betriebskosten (DOC)	
A.3		hl Referenzflugzeug	
A.4		nisse Entwurf des Referenzflugzeugs	
	_	Ergebnisse ATR72-500	
		Ergebnisse Airbus A318	
A.5		erung der Referenzmethode für LH2-Konfigurationen	
		Tankauslegung für LH2-betriebene Flugzeuge	
	A.5.2		
		meter	193
	A.5.3	Berechnung der LH2-Tankmasse	196
A.6		erung der Referenzmethode für TE-Konfigurationen	
		Rumpfintegration der Triebwerke	
		Zuordnung der TE-Antriebskomponenten zu Massengruppen	
A.7		erung der Referenzmethode für FC-Konfigurationen	
		Eingabeparameter für Brennstoffzellen-Leistungsparameter	
A.8		erung der Referenzmethode für BAT-Konfigurationen	
		Meta-Untersuchung zur Entwicklung von Batterieleistung	
		Herleitung Betriebsleermasse	
	A.8.3	Abschätzung Batterie-Ladezeiten	
A.9	Erweit	erung der Referenzmethode für Hybrid-Konfigurationen	204
	A.9.1	Anzahl und Integration der Antriebssysteme aller Hybride	
	A.9.2	Gemeinsame Nutzung der GT-Propeller	
	A.9.3	Skalierung der Antriebssysteme für Hybrid-Konfigurationen	207
A.10	Ergebr	nisse	210
	_	Zusammenfassung der Eingabeparameter	
		Entwurfsdimensionen	
		Parameter-Vergleich	
		Parameter-Sensitivitäts-Analysen	
		Aufgliederung der Massen	
		DOC-Aufgliederung	

Literaturverzeichnis	23	33
A.10.8 Trade-Off-Analysen		29
A.10.7 Relative Bewertung		28

Abbildungsverzeichnis

Relative CO_2 -Emissionen alternativer Luftiahrtkraftstoffe entlang des gesamten Lebenszyklus im Vergleich zu Kerosin	6
Schematische Darstellung der Komponenten eines turboelektrischen Antriebssystems	12
Auszug des grundsätzlichen Optionenraums für Antriebskonfigurationen elektrisch betriebener Verkehrsflugzeuge im Zeithorizont bis $2040+\ldots$	22
Definition der drei "Versionspakete" für die Dimensionen 9 und 10 (Anzahl und Design der Antriebseinheiten)	27
Referenzmethode zum Flugzeugentwurf entlang von sechs Hauptmodulen	30
Entwurfsdiagramm für das Referenzflugzeug ATR 72-500 (Ergebnis der	
,	34
ÿ	39
	49
	50
Aufteilung der maximalen Startmasse der ATR 72-500 auf Massegruppen	52
Funktionsdiagramm für gasturbinenbetriebene Antriebskonfigurationen .	54
Ausgewählte Optionen für Unterbringung von LH2-Tanks	57
Funktionsdiagramm für turboelektrische Antriebskonfigurationen, hier:	
	65
	67
· · · · · · · · · · · · · · · · · · ·	0.0
	80
	96
	86
	97
· · · · · · · · · · · · · · · · · · ·	91
e e	102
,	
v	104
Funktionsdiagramm für Hybridkonfigurationen Brennstoffzelle – Turbo-	
wellentriebwerk (HYB-FC-GT)	106
	samten Lebenszyklus im Vergleich zu Kerosin

4.11	HYB-GT-FC: Verlauf der relativen direkten Betriebskosten über dem Hy-	107
1 19	bridisierungsgrad DH_P (Abschätzung Vorentwurf) Funktionsdiagramm für Hybridkonfigurationen Turbowellentriebwerk –	107
4.12		108
4.13	HYB-GT-BAT: Verlauf der relativen direkten Betriebskosten über dem	
	Hybridisierungsgrad DH_P (Abschätzung Vorentwurf)	108
4.14	Funktionsdiagramm für Hybridkonfigurationen turboelektrischer Antrieb	
		109
4.15	HYB-FC-TE: Verlauf der relativen direkten Betriebskosten über dem Hy-	
	bridisierungsgrad DH_P (Abschätzung Vorentwurf)	110
4.16	Funktionsdiagramm für Hybridkonfigurationen turboelektrischer Antrieb	
	,	111
4.17	HYB-FC-BAT: Verlauf der relativen direkten Betriebskosten über dem	
	- (112
4.18	Funktionsdiagramm für Hybridkonfigurationen turboelektrischer Antrieb	
4.10		113
4.19	HYB-FC-BAT: Verlauf der relativen direkten Betriebskosten über dem	110
	Hybridisierungsgrad DH_P (Abschätzung Vorentwurf)	113
5.1	Parameter-Vergleich MTOM, OEM, DOC und CO ₂ -Emissionen, hier: Mono-	_
	Konfigurationen, Basis-Versionen	
5.2	Parameter-Vergleich MTOM, OEM, DOC und Lebenszyklus- CO_2 -Emissione	en,
	hier: Mono-Konfigurationen, Level-1-optimierte Versionen	129
5.3	Parameter-Vergleich MTOM, OEM, DOC und Lebenszyklus- CO_2 -Emissione	
	hier: Hybrid-Konfigurationen, Basis-Versionen	
5.4	Parameter-Vergleich MTOM, OEM, DOC und Lebenszyklus- CO_2 -Emissione	
		131
5.5	Parameter-Sensitivitäts-Analyse hinsichtlich MTOM und DOC für GT-	100
F C	LH2-B-Konfiguration	132
5.6	Parameter-Sensitivitäts-Analyse hinsichtlich MTOM und DOC für $TE-LH2-L1$ -Konfiguration	122
5.7	LH2-L1-Konfiguration	190
5.1	JF-L2-Konfiguration	134
5.8	Parameter-Sensitivitäts-Analyse hinsichtlich MTOM und DOC für BAT-	101
0.0	L1-Konfiguration	135
5.9	Parameter-Sensitivitäts-Analyse hinsichtlich MTOM und DOC für HYB-	
	GTJF-BAT-L1-Konfiguration	136
5.10	Verlauf der relativen direkten Betriebskosten über dem Hybridisierungs-	
	grad DH_P , exemplarisch für ausgewählte Konfigurationen	137
5.11	Aufgliederung der maximalen Startmasse MTOM auf Massegruppen nach	
	Class-II-Methode, $hier:$ Mono-Konfigurationen, $Basis$ -Versionen	138
5.12	0 0	
	Class-II-Methode, hier: Hybrid-Konfigurationen, Basis-Versionen	139

5.13	Aufgliederung der direkten Betriebskosten DOC auf einzelne Kostenelemente, hier: Mono-Konfigurationen, Basis-Versionen	140
5.14	Aufgliederung der direkten Betriebskosten DOC auf einzelne Kostenele-	
	mente, hier: Hybrid-Konfigurationen, Basis-Versionen	141
5.15	Relative Bewertung aller Mono-Konfigurationen hinsichtlich DOC und	
	v	142
5.16	Relative Bewertung aller Basis— und Level-1-optimierten Hybrid-Konfi-	
	gurationen hinsichtlich DOC und Lebenszyklus- CO_2 -Emissionen	143
A 1	Maximaler Auftriebsbeiwert in Landekonfiguration in Abhängigkeit der	
11.1		158
A.2	Verhältnis aus maximaler Lande- zu Startmasse $\frac{m_{ML}}{m_{MTO}}$ in Abhängigkeit	100
	m_{MTO} der Flugzeugkategorie	159
A.3	Maximaler Auftriebsbeiwert in Startkonfiguration in Abhängigkeit der	
		159
A.4	Propellerwirkungsgrad η_P in Abhängigkeit von Schaufelbelastung L und	
	Geschwindigkeit V	160
A.5	Annahmen für Profilwiderstände im Rahmen der Dimensionierung	162
A.6	Statistische Werte für das Verhältnis von maximaler Lande– zu Startmasse	e162
	Koeffizienten A und B zur Berechnung der Flügelmasse	
	Koeffizienten für die Massenabschätzung der operativen Ausrüstung k_{Op} .	
	Eingabe-Daten für das Scoring-Model zur Auswahl eines Referenz-Flugzeugs	
	Entwurfsdiagramm der ATR72-500	188
A.11	Ausgewähltes Flügelprofil für das Referenzflugzeug ATR72-500 an der	400
1 10	Flügelwurzel: NACA-43017	
	0 1	188
A.13	Aufgliederung der maximalen Startmasse in Massegruppen des Referenz-	189
Λ 1.4	flugzeugs ATR72-500	
		190
	Aufgliederung der direkten Betriebskosten (DOC) des Referenzflugzeugs	150
11.10	ATR72-500	190
A.17	Auswertung verschiedener Quellen zu Ausblicken zur Batterie-Technologie	100
	hinsichtlich kritischer Eingabe-Parameter	201
A.18	Vergleich der Funktionsdiagramme für Hybrid-Konfigurationen HYB-GT-	
	TE mit separat bzw. gemeinsam genutztem GT-Propeller	208
A.19	Parameter-Vergleich MTOM, OEM, DOC und CO ₂ -Emissionen, hier: Mono-	_
	Konfigurationen, Level-2-optimierte Versionen	216
A.20	Parameter-Vergleich MTOM, OEM, DOC und CO_2 -Emissionen, $hier:$ Hybrid	
	Konfigurationen, Level-2-optimierte Versionen	216
A.21	Parameter-Sensitivitäts-Analyse hinsichtlich MTOM und DOC für GT -	
	LH2-Konfigurationen	217
A.22	Parameter-Sensitivitäts-Analyse hinsichtlich MTOM und DOC für TE-	010
	JF-Konfigurationen	218

A.23 Parameter-Sensitivitäts-Analyse hinsichtlich MTOM und DOC für TE-	
LH2-Konfigurationen	219
$\rm A.24$ Parameter-Sensitivitäts-Analyse hinsichtlich MTOM und DOC für $\it FC$	
JF-Konfigurationen	220
$\rm A.25$ Parameter-Sensitivitäts-Analyse hinsichtlich MTOM und DOC für FC-	
LH2-Konfigurationen	221
A.26 Parameter-Sensitivitäts-Analyse hinsichtlich MTOM und DOC für BAT -	
Konfigurationen	222
A.27 Verlauf der relativen direkten Betriebskosten über dem Hybridisierungs-	
grad DH_P aller Hybrid-Konfigurationen, Teil 1	223
A.28 Verlauf der relativen direkten Betriebskosten über dem Hybridisierungs-	
grad DH_P aller Hybrid-Konfigurationen, Teil 2	224
A.29 Aufgliederung der maximalen Startmasse MTOM auf Massegruppen nach	
Class-II-Methode, hier: Mono-Konfigurationen, Level-1-optimierte Versio-	
nen	225
A.30 Aufgliederung der maximalen Startmasse MTOM auf Massegruppen nach	
Class-II-Methode, hier: Hybrid-Konfigurationen, Level-1-optimierten Ver-	
sionen	225
A.31 Aufgliederung der maximalen Startmasse MTOM auf Massegruppen nach	
Class-II-Methode, hier: Mono-Konfigurationen, Level-2-optimierte Versio-	
nen	226
A.32 Aufgliederung der maximalen Startmasse MTOM auf Massegruppen nach	
Class-II-Methode, hier: Hybrid-Konfigurationen, Level-2-optimierte Ver-	
sionen	226
A.33 Aufgliederung der direkten Betriebskosten DOC auf einzelne Kostenele-	
mente, hier: Mono-Konfigurationen, Level-1-optimierte Versionen	227
A.34 Aufgliederung der direkten Betriebskosten DOC auf einzelne Kostenele-	
mente, hier: Hybrid-Konfigurationen, Level-1-optimierte Versionen	227
A.35 Aufgliederung der direkten Betriebskosten DOC auf einzelne Kostenele-	
mente, hier: Mono-Konfigurationen, Level-2-optimierte Versionen	228
A.36 Aufgliederung der direkten Betriebskosten DOC auf einzelne Kostenele-	
mente, hier: Hybrid-Konfigurationen, Level-2-optimierte Versionen	228
A.37 Relative Bewertung aller Hybrid-Konfigurationen hinsichtlich DOC und	220
Lebenszyklus- CO_2 -Emissionen	229
A.38 Trade-Off-Analyse für Mono-Basis-Konfigurationen	
A.39 Trade-Off-Analyse für Hybrid-Basis-Konfigurationen	
A.40 Trade-Off-Analyse für Mono-Level-1-Konfigurationen	
A.41 Trade-Off-Analyse für Hybrid-Level-1-Konfigurationen	
A.42 Trade-Off-Analyse für Mono-Level-2-Konfigurationen	
A 43 Trade-Off-Analyse für Hybrid-Level-2-Konfigurationen	232

Tabellenverzeichnis

3.1	Bezeichnung und Beschreibung der 24+1 untersuchten Konfigurationen, Teil 1: Mono-Konfigurationen	25
3.2	Bezeichnung und Beschreibung der 24+1 untersuchten Konfigurationen, Teil 2: Hybrid-Konfigurationen	26
3.3	Ergebnisse der Referenzmethode für die ATR72-500 im Vergleich zu den realen Werten	51
4.1	Annahmen für Vortriebswirkungsgrade η_{Prop} in Abhängigkeit der Antriebsversion der TE-Konfigurationen	73
4.2	Annahmen für spezifische Leistungen $\frac{P}{m}$ der zusätzlichen Komponenten für TE-Konfigurationen	75
4.3	Annahmen für Brennstoffzellen-Leistungsparameter 2011 und im Zieljahr 2040+ (Werte für Gesamtsystem), Quellen siehe vorige Seite	82
5.1	Vergleich der Ergebnisse der GT-LH2-Konfiguration mit ausgewählten Studien zu LH2-betriebenen Flugzeugen	123
5.2	Vergleich der Ergebnisse der BAT-Konfiguration mit ausgewählten Studien zu batteriebetriebenen Flugzeugen	124
5.3	Ausgewählte Entwurfsdimensionen, hier: Mono-Konfigurationen, Basis-Version	126
5.4	$\label{thm:eq:ausgewählte} Ausgewählte \ Entwurfsdimensionen, hier: \ Hybrid-Konfigurationen \ (Teil\ 1),$	127
5.5	$\label{thm:eq:ausgewählte} Ausgewählte \ Entwurfsdimensionen, hier: \ Hybrid-Konfigurationen \ (Teil\ 2),$	
	Basis-Version	127
A.1 A.2 A.3	Ausgewählte Typen von Brennstoffzellen	155 165
11.0	realen Werten	191
A.4	Gravimetrische Speicherdichten und Massen der untersuchten LH2-Tank- Konfigurationen	196
A.5	Zuordnung der Komponenten des Antriebssystems zur Rumpfgruppe (RG)	
A.6	bzw. zur Flügelgruppe (FG)	$\frac{198}{207}$
A.7	Auswahl der wichtigsten Eingabe-Parameter für TE -Konfigurationen	210
A.8	Auswahl der wichtigsten Eingabe-Parameter für FC -Konfigurationen	211

A.9	Auswahl der wichtigsten Eingabe-Parameter für BAT-Konfigurationen	212
A.10	Ausgewählte Entwurfsdimensionen, hier: Mono-Konfigurationen, Level-1-	
	optimierte-Version	213
A.11	Ausgewählte Entwurfsdimensionen, hier: Hybrid-Konfigurationen (Teil 1),	
	Level-1-optimierte Version	213
A.12	Ausgewählte Entwurfsdimensionen, hier: Hybrid-Konfigurationen (Teil 2),	
	Level-1-optimierte Version	214
A.13	Ausgewählte Entwurfsdimensionen, hier: Mono-Konfigurationen, Level-2-	
	optimierte Version	214
A.14	Ausgewählte Entwurfsdimensionen, hier: Hybrid-Konfigurationen (Teil 1),	
	Level-2-optimierte Version	215
A.15	Ausgewählte Entwurfsdimensionen, hier: Hybrid-Konfigurationen (Teil 2),	
	Level-2-optimierte Version	215

Verzeichnis von Abkürzungen und Formelzeichen

Abkürzungen

AC Aerodynamic center, Neutralpunkt AEA Association of European Airlines

B Base Version, Basis-Version

BAT Battery, Batterie

BLI Boundary Layer Ingestion, Grenzschichteinsaugung

BPR Bypass Ratio, Nebenstrom-Verhältnis

BTL Biomass-to-Liquid, Biomasse-zu-Flüssigkeit
BWB Blended wing body, Nur-Flügel-Flugzeug

CG Center of gravity, Schwerpunkt

CMF Common Core Multi Fans, verteilte Antriebe mit gemeinsamem

Triebwerkskern

CTL Coal-to-Liquid, Kohle-zu-Flüssigkeit
DEN Distributed engines, verteilte Antriebe
DEX Distributed Exhaust, verteilter Auslass

DOC Direct Operating Cost, direkte Betriebskosten

FC Fuel Cell, Brennstoffzelle

FPR Fan Pressure Ratio, Fan-Druckverhältnis GT Gas turbine engine, Gasturbinentriebwerk

GTL Gas-to-Liquid, Gas-zu-Flüssigkeit

HEFA Hydroprocessed-Easter-and-Fatty-Acids, hydro-behandelte Ester und

Fettsäuren

HTS High Temperature Superconductors, Hochtemperatur-Supraleiter

HWB Hybrid wing body

HYB Hybrid configuration, Hybrid-Konfiguration

JF Jet Fuel, Kerosin

L1 Level 1 Optimized Version, Level-1-optimierte Version L2 Level 2 Optimized Version, Level-2-optimierte Version

LE Leading edge, Vorderkante

LH2 Liquid Hydrogen, flüssiger Wasserstoff

LTO Landing Take-off cycle, Lande- und Startvorgang

MAC Mean Aerodynamic Chord, mittlere aerodynamische Profiltiefe

MONO Mono configuration, Mono-Konfiguration

MTOM Maximum Take-off Mass, maximale Startmasse
NACA National Advisory Committee for Aeronautics
OEI One Engine Inoperative, Ausfall eines Triebwerks

OEM Operating Empty Mass, Betriebsleermasse

PAX Passengers, Passagiere

PEM Proton Exchange Membrane, PEM-Brennstoffzelle

PMAD Power Management and Distribution System, Leistungs-Management

und -Verteilungssystem

PSFC Power Specific Fuel Consumption, leistungsspezifischer

Treibstoffverbrauch

PTL/Turboprop Turbo Prop, Propeller-Turbinen-Luftstrahl-Triebwerk
PSFC Power Specific Fuel Consumption, leistungsspezifischer

Treibstoffverbrauch

SEC Specific Energy Consumption, spezifischer Energieverbrauch

SFC Specific Fuel Consumption, (schub)spezifischer Treibstoffverbrauch

SOFC Solid Oxide Fuel Cell, SOFC-Brennstoffzelle STL Sunlight-to-Liquid, Sonnenlicht-zu-Flüssigkeit

TE Trailing edge, Hinterkante bzw. Turboelectric, turboelektrisch

TF/Turbofan Turbo Fan, Turbinenluftstrahltriebwerk

TSFC Thrust Specific Fuel Consumption, schubspezifischer

Treibstoffverbrauch

UAV Unmanned Aerial Vehicle, unbemanntes Luftfahrtzeug UHC Unburnt Hydrocarbons, unverbrannte Kohlenwasserstoffe

ZFM Zero Fuel Mass, Null-Treibstoff-Masse

Formelzeichen

Α Aspect Ratio, Streckung Angle of attack, Anstellwinkel α b Span, Spannweite В Breguet Factor, Breguet Reichweitenfaktor Β Yaw angle, Gierwinkel \mathbf{c} Chord, Profiltiefe bzw. Airfoil coefficient, Profilbeiwert (2D) \mathbf{C} Capacity, Kapazität Co Costs, Kosten d Diameter, Durchmesser D Drag, Widerstand DH Degree of Hybridization, Hybridisierungsgrad δ Deflection angle, Ausschlagwinkel Oswald factor, Oswald Faktor е Wing twist, Flügelverwindung bzw. wash down angle, Abwindwinkel ϵ Efficiency, Wirkungsgrad bzw. Ratio of dynamic pressure, Verhältnis η der Staudrücke FF Form Factor, Formfaktor Acceleration due to gravity, Erdbeschleunigung g Climb gradient, Steiggradient bzw. isentropic exponent, γ Isentropenexponent h Altitude, Höhe Η Heating value, Heizwert Incidence angle, Einstellwinkel bzw. current, Stromstärke i k Constant, Konstante/Koeffizient 1 Length, Länge bzw. Hebelarm L Lift, Auftrieb bzw. Blade loading, Schaufelbelastung bzw. Labor rate, Stundensatz L/DLift-Drag-Ratio, Gleitzahl λ tapper ratio, Zuspitzung bzw. (für Rumpf) slenderness, Schlankheitsgrad Mass, Masse \mathbf{m} Mach number, Machzahl bzw. Torque around y-axis, Moment Μ bezüglich y-Achse bzw. Mass fractio, Massenanteile Number, Anzahl bzw. load, Lastvielfaches n

N Torque around z-axis, Moment bezüglich z-Achse

OE Operating empty, betriebsleer

p Interest rate, Zinssatz bzw. Inflationsrate

P Power, Leistung

Pr Price, Preis

 ϕ Sweep angle, Pfeilungs-Winkel q Dynamic pressure, Staudruck

Q Interference Factor, Interferenzfaktor

r Radius, Radius R Range, Reichweite

Rt Rating, Batterie-Rating

s Distance, Strecke S Surface area, Fläche

 σ Relative density, Relative Luftdichte SoC State of charge, Ladung (Batterie) t Thickness, Dicke bzw. Time, Zeit

T Thrust, Schub

Flügelwurzel

V Velocity, Geschwindigkeit

 $\overline{\omega}$ Power contral parameter, Leistungs-Steuerungsparameter

 ν Dihedral angle, V-Winkel

x Distance in x-direction, Abstand in x-Richtung
y Distance in y-direction, Abstand in y-Richtung

 Δy Leading Edge Sharpness Parameter, Vorderkanten-Parameter

Y Force in y-direction, Kraft in y-Richtung (Querachse)

z Distance in z-direction, Abstand in z-Richtung

Indizes

()₀ Zero lift, Nullauftrieb bzw. normal null, Normalnull

()₂₅ Quarter chord, 25% der Profiltiefe

 $()_{\alpha}$ with regards to angle of attack, bezüglich Anstellwinkel

 $()_{AC}$ Aerodynamic center, Neutralpunkt

 $()_{AF}$ Airframe, Flugzeugstruktur ohne Ersatzteile

() $_{APP}$ Approach, Anflug () $_{av}$ Average, Durchschnitt

 $()_{BAT}$ Battery, Batterie

 $()_{Bl}$ Blade, Propeller-Blätter

 $()_{CAB}$ Cabin, Kabine

 $()_{CG}$ Center of gravity, Schwerpunkt

 $()_{CL}$ Climb, Steigflug

()_{conv} Conventional, konventionelles (Referenz-)Flugzeug

() $_{CR}$ Cruise, Reiseflug

 $()_{Crew}$ Crew, Crew

 $()_{CO}$ Cockpit, Cockpit

()_{crit} Critical, kritisch (z. B. Machzahl)

 $()_{cycles}$ Cycles, Zyklen

 $()_D$ Drag, Widerstand bzw. Dive, Sturz (z. B. Sturzgeschwindigkeit)

 $()_{DD}$ Drag divergence, Widerstandsanstieg

 $()_{DEP}$ Depreciation, Abschreibung

 $()_{DES}$ Descent, Sinkflug

 $()_{DOC}$ Direct operating costs, direkte Betriebskosten

()_{delivery} Delivery, Auslieferung

 $()_{design}$ Design, Entwurf

 $()_{downscaling}$ downscaling, herunterskaliert

 $()_E$ Engines, Triebwerke

 $()_{E-recup}$ Energy Recuperation, Energie-Rückgewinnung

 $()_{Elec}$ Electricity, Strom

() $_{GND}$ Electric Motor, E-Motor () $_{Em}$ Emissions, Emissionen

 $()_{EmFee}$ Emission Fees, Emissions-Strafgebühren

 $()_{est}$ estimated, geschätzt

 $()_f$ Flaps, Hinterkantenklappen bzw. friction, Reibung

 $()_F$ Fuslage, Rumpf

 $()_{FC}$ Fuel Cell, Brennstoffzelle

 $()_{Fee}$ Fees, Gebühren

 $()_{ff}$ Fuel fraction, Kraftstoffanteil

 $()_{Fl}$ Flight, Flug

() $_{Fuel}$ Fuel, Kraftstoff () $_{Gear}$ Gear, Getriebe

 $()_{Gen}$ Generator, Generator

 $()_{GND}$ Ground, Boden

()_{grav} gravimetric, gravimetrisch

 $()_{GT}$ Gas turbine engine, Gasturbinentriebwerk

() $_{H}$ Horizontal Tail, Höhenleitwerk () $_{HYB}$ Hybrid, Hybrid-Konfiguration

() $_i$ Counting variable, Laufvariable (z. B. Flugsegment)

() $_{in}$ inner, innerer (Wirkungsgrad)

() $_{Ins}$ Insurance, Versicherung () $_{inst}$ installed, installiert

()_{inboardengines} Inboard engines, bezogen auf innere Triebwerke

() $_{Ins}$ Interest, Zinsen () $_{JF}$ Jet Fuel, Jet Fuel

 $()_k$ Kink, Übergang vom inneren zum äußeren Flügel

()_L Lift, Auftrieb bzw. Landing, Landung

 $()_{LEMAC}$ Leading edge mean aerodynamic chord, Vorderkante bei der

mittleren aerodynamischen Profiltiefe

 $()_{LFL}$ Landing Field Length, Sicherheitslandestrecke

 $()_{LG}$ Landing gear, Fahrwerk

() $_{LG,main}$ Main landing gear, Haupt-Fahrwerk () $_{LG,nose}$ Nose landing gear, Bug-Fahrwerk () $_{LH2}$ Liquid hydrogen, flüssiger Wasserstoff () $_{MA}$ Missed Approach, Durchstarte-Manöver

 $()_{MAC}$ Mean Aerodynamic Chord, mittlere aerodynamische Profiltiefe

 $()_{Main}$ Maintenance, Wartung

 $()_{max}$ Maximum value, maximaler Wert

 $()_{mech}$ mechanical, mechanisch

 $()_{ML}$ Max. Landing, maximale Lande-(masse)

 $()_{MONO}$ Mono, Mono-Konfiguration

() $_{MPL}$ Max. Payload, maximale Nutzlast () $_{MTO}$ Max. Take-off, maximale Start-(masse)

()_N Nacelles, Triebwerksgondeln ()_{NAV} Navigation, Flugsicherung

 $()_{OE}$ Operating empty, Betriebsleer-(masse)

 $()_{OEI}$ One engine inoperative, bei Ausfall eine Triebwerks

 O_{Dp} Operative Equipment, operative Ausrüstung

()_{outboardengines} Outboard engines, bezogen auf äußere Triebwerke

()_{PL} Payload, Nutzlast ()_P Propeller, Propeller ()_{PAX} Passenger, Passagiere

 $()_{PMAD}$ Power Management and Distribution System,

Leistungs-Management- und -Verteilungssystem

 $()_{PrimPS}$ Primary Propulsion System, primäres Antriebssystem

 $()_{Prop}$ Propulsion System, Antriebssystem

 $()_r$ Root, Flügelwurzel

 $()_{ref}$ Referenze, Referenze (z. B. Referenze-Oberfläche)

 $()_{relief}$ Relief, entlastendes Biegemoment

() $_{residual}$ Residual, Restwert () $_{rev}$ revised, reviediert

 $()_s$ Slat, Vorflügel/Vorderkantenklappen

 $()_S$ Stall, Überziehen (z. B. Überziehgeschwindigkeit)

 $()_{scaling}$ scaling, skaliert

 $()_{SecPS}$ Secondary Propulsion System, Sekundäres Antriebssystem

 $()_{seats}$ Seats, Sitze

()_{seats,abreast} Seats Abreast, Sitze pro Reihe

 $()_{Shaft}$ Shaft, Welle

()_{ShroudProp} Shrouded Propeller, Mantelpropeller

() $_{Spare}$ Spare Parts, Ersatzteile () $_{struct}$ Structure, Struktur

 $()_{SubSys}$ Subsystem, Teilsystem(eines Antriebssystems)

()_{sup} supplied, zugeführt ()_{SYS} Systems, Systeme ()_t Tip, Flügelspitze

 $()_T$ Taxi, Taxi bzw. Thrust, Schub

 $()_{Tank}$ Tank, Tank

 $()_T$ Turbo Generator, Turbogenerator (Turbowellentriebwerk +

Generator)

 $()_{therm}$ thermical, thermisch

 $()_{TO}$ Take-off, Start

 $()_{TOFL}$ Take-off Field Length, Sicherheitsstartstrecke

 $()_{tot}$ Total, Gesamt-

()_{ult} Ultimate, Bruch- (z. B. Bruch-Lastfaktor)

 $()_V$ Vertical Tail, Seitenleitwerk

 $()_W$ Wing, Flügel

() $_{wave}$ Wave, Wellen (z. B. Wellenwiderstand)

 $()_{wet}$ Wetted, benetzt (z. B. benetzte Oberfläche)