
Benedikt Bierer

Entwurf und Aufbau eines robusten Gassensorsystems für Biogasanlagen

IMTEK, Universität Freiburg

Gas Sensors Vol. 4

Entwurf und Aufbau eines robusten Gassensorsystems für Biogasanlagen

Vorgelegt von

Benedikt Bierer

Professur für Gassensoren Institut für Mikrosystemtechnik Albert-Ludwigs-Universität Freiburg

Dissertation zur Erlangung des Doktorgrades der Technischen Fakultät der Albert-Ludwigs-Universität Freiburg im Breisgau

Dekan

Prof. Dr. Oliver Paul

Gutachter

Prof. Dr. Jürgen Wöllenstein

Prof. Dr. Leonhard Reindl

Betreuer

Prof. Dr. Stefan Palzer

Datum der Disputation

24.09.2018

Gas Sensors herausgegeben von Prof. Dr. Jürgen Wöllenstein

Volume 4

Benedikt Bierer

Entwurf und Aufbau eines robusten Gassensorsystems für Biogasanlagen

Shaker Verlag Aachen 2018

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: Freiburg, Univ., Diss., 2018

Copyright Shaker Verlag 2018 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8440-6336-3 ISSN 2566-8552

Shaker Verlag GmbH • Postfach 101818 • 52018 Aachen Telefon: 02407 / 95 96 - 0 • Telefax: 02407 / 95 96 - 9 Internet: www.shaker.de • E-Mail: info@shaker.de

Inhaltsverzeichnis

Kι	Kurzfassung					
Abstract 3						
1.	Einle	eitung	5			
2.	The	oretische Grundlagen	9			
	2.1.	Funktionsweise einer Biogasanlage	9			
		Physikalische Eigenschaften von Gasen und ihre Nutzung als Sensor-				
		signal	13			
	2.3.	Festkörpergassensoren	13			
		2.3.1. Wärmeleitfähigkeit	14			
		2.3.2. Wechselwirkung zwischen Gas und Festkörperoberfläche	14			
		2.3.3. Funktionsweise von Metalloxidgassensoren	19			
		2.3.4. Kupfer(II)oxid als gassensitves Material	21			
	2.4.	Absorptionsspektroskopie	23			
		2.4.1. Energieniveaus und Übergänge	24			
		2.4.2. Diskussion der Spektren von CH_4 und CO_2	29			
		2.4.3. Lambert-Beersches Gesetz	31			
	2.5.	Photoakustisches Prinzip	32			
3.	Star	nd der Technik - Biogasmesstechnik	35			
	3.1.		35			
	3.2.	Wärmeleitfähigkeitssensoren	37			
	3.3.	Elektrochemische Sensoren	38			
	3.4.	Gassensitive Halbleiter	39			
	3.5.	Relevante wissenschaftliche Publikationen	40			
	3.6.	Übersicht kommerzieller Sensorsysteme und Diskussion	41			
4.	Sens	sorkonzepte	43			
	4.1.	•	43			
	4.2.					
	4.3.					
		4.3.1. Herstellung der CuO-Partikel	52			
		4.3.2. Elektrische Untersuchung des Phasenübergangs	53			
		4.3.3. Kalorimetrische Untersuchung des Phasenübergangs	56			

	4.4.	Photoakustikbasierte NDIR-Spektroskopie	56	
		4.4.1. Photoakustik mit thermischem Strahler (1.Generation)	57	
		4.4.2. LED-basierte Photoakustik (2.Generation)	61	
5.	Erge	ebnisse - Charakterisierung der Einzelmodule im Labor	65	
	5.1.	Wasserstoffdetektion durch virtuelles Sensorarray	65	
	5.2.	Selektive Schwefelwasserstoffdetektion	70	
	5.3.	Photoakustische Methan- und Kohlenstoffdioxidmessung	80	
		5.3.1. Thermischer Strahler (1. Generation)		
		5.3.2. LED-basiertes System (2. Generation)	87	
6.	PA-System im Feldtest			
	6.1.	Funktionsprüfung des PA-Systems im realen Biogas	101	
	6.2.	Langzeittest	103	
7.	Zusa	ammenfassung	109	
Lit	Literaturverzeichnis			
Pι	Publikationen			
Nomenklatur				
Α.	Anh	ang	131	
		Technische Zeichnung Gasmesskammer	132	
		Druckparameter		
Danksagung				

Kurzfassung

Für eine zukünftig nachhaltige und treibhausgasneutrale Energieversorgung werden flexibel einsetzbare erneuerbare Energiequellen benötigt. Biogas kann hier eine zentrale Rolle als wetter- und standortunabhängige Energiequelle spielen. Zurzeit ist aber nicht einmal die Grundvoraussetzung für einen flexiblen Betrieb gegeben, da es keine kosteneffiziente Technologie für die Messung der Biogaszusammensetzung gibt, die die Grundlage für eine aktive Steuerung der Ausbeute und der Stabilität der Prozessbiologie ist. Aus diesem Grund wurden in dieser Arbeit neue Technologien für den selektiven und empfindlichen Nachweis der wichtigsten Biogaskomponenten (Methan (CH₄), Kohlendioxid (CO₂), Wasserstoff (H₂), Schwefelwasserstoff (H₂S)) erforscht.

Der für den Brennwert des Biogases entscheidende Gehalt an $\mathrm{CH_4}$ und $\mathrm{CO_2}$ wurde photoakustisch im relevanten Bereich von 0-70% gemessen. Dazu wurde ein in-situ Messsystem entwickelt und charakterisiert, das mit einer optischen Weglänge von 1 mm für bei Kanäle eine absolute Auflösung von 1900 ppm für $\mathrm{CO_2}$ und 4500 ppm für $\mathrm{CH_4}$ bei 1 Hz Messfrequenz erreicht. Das System zeigt keine Querempfindlichkeiten zu Luftfeuchte und beeinflussende Temperaturschwankungen wurden durch hier entwickelte, geeignete Kompensationstechniken beseitigt.

Zum selektiven Nachweis von H₂S mit MEMS-basierten Metalloxidsensoren im Bereich von 500 ppb bis 5 ppm wurde die Phasenübergangsreaktion von Kupfer(II)oxid (CuO) zu Kupfersulfid (CuS) verwendet. Dieser Bereich eignet sich, um den Restgehalt des Gases nach der Aufwertung von Biogas zu Biomethan zu untersuchen. H₂ als Prozessstabilitätsparameter wurde durch die selektivitätssteigernde Kombination der Messung des elektrischen Schichtwiderstandes des Gassensors und der Wärmeleitfähigkeit im Bereich von 40 bis 3000 ppm gemessen.

Im Feldtest in einer repräsentativen Biogasanlage wurde die Praxistauglichkeit des Photoakustiksystems untersucht und mit den Messergebnissen kommerzieller Messtechnik verglichen. Das neu entwickelte Messsystem liefert in der rauen Biogasumgebung zuverlässig Messwerte im gleichen Konzentrationsbereich bei deutlich schnellerer Messwertaufnahme. Somit ist auch im realen Umfeld einer Biogasanlage durch die schnelle Datenausgabe eine kontinuierliche Überwachung der relevanten Parameter möglich. Die hier erarbeiten Ergebnisse können so die Grundlage für eine zukünftig flexible Biogasprozessteuerung bilden.

Abstract

Flexible and renewable energy sources are much in need to enable a future sustainable and greenhouse gas-neutral energy landscape. To this end, biogas can play a significant role as a weather- and location-independent energy source. However, at present not even the basic requirements for flexible operation are fulfilled as there is no cost-effective technology for measuring the biogas composition. Only once the quality of biogas may be determined reliably and fast, a demand-driven operation of biogas plants becomes feasible. For this reason, this work explores new technologies for the selective, stable and sensitive detection of the key biogas components methane (CH₄), carbon dioxide (CO₂), hydrogen (H₂), and hydrogen sulfide (H₂S). The contents of CH₄ and CO₂ are crucial for the calorific value of biogas and here they have been measured employing a photoacoustic scheme operating in-situ and covering the relevant range of 0-70%. The gas sensing device features an optical path of 1 mm for both channels and has been designed, built and characterized in the laboratory. Assessment of the performance shows an absolute resolution of 1900 ppm for CO₂ and 4500 ppm for CH₄ at 1 Hz measurement frequency. The device does not show cross-sensitivity towards humidity and temperature fluctuations can be eliminated by a suitable compensation technique developed within this thesis.

The selective detection of H_2S in the relevant range of 500 ppb to 5 ppm for biomethane has been achieved with a micromachined metal oxide sensor employing a novel detection scheme based on monitoring the H_2S -induced phase transition from copper(II)oxide (CuO) to copper sulfide (CuS).

 $\rm H_2$ as a crucial process stability parameter has been measured by combining the information from electrical resistance measurements of a gas sensitive layer with that of the thermal conductivity in the range of 40 to 3000 ppm at considerably enhanced selectivity.

The performance of the photoacoustic system has been investigated and benchmarked against commercial measurement technology under real-world conditions in a representative biogas plant. The newly developed system reliably delivers gas concentration values consistent with state-of-the-art technology but at significantly faster measurement speed. Hence, even in the real environment of a biogas plant continuous monitoring of the relevant parameters can be obtained. The results presented here may help to pave the way for a future flexible biogas process control.