Forschungsberichte aus dem Max-Planck-Institut für Dynamik komplexer technischer Systeme

# **Regina Samaga**

# Qualitative and Semi-Quantitative Analysis of Signal Transduction Networks



# Qualitative and Semi-Quantitative Analysis of Signal Transduction Networks

**Dissertation** zur Erlangung des akademischen Grades

### Doktoringenieurin (Dr.-Ing.)

von Dipl. Biomathematikerin Regina Samaga, geb. Reiner, geboren am 18.02.1982 in Dachau.

Genehmigt durch die Fakultät für Elektrotechnik und Informationstechnik der Otto-von-Guericke-Universität Magdeburg.

Gutachter: Prof. Dr.-Ing. Rolf Findeisen Dr.-Ing. Steffen Klamt Prof. Dr.-Ing. Thomas Sauter

Promotionskolloquium am 4. Juli 2018

Forschungsberichte aus dem Max-Planck-Institut für Dynamik komplexer technischer Systeme

Band 51

### **Regina Samaga**

## Qualitative and Semi-Quantitative Analysis of Signal Transduction Networks

Shaker Verlag Aachen 2018

#### Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available in the Internet at http://dnb.d-nb.de.

Zugl.: Magdeburg, Univ., Diss., 2018

Copyright Shaker Verlag 2018 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the publishers.

Printed in Germany.

ISBN 978-3-8440-6203-8 ISSN 1439-4804

Shaker Verlag GmbH • P.O. BOX 101818 • D-52018 Aachen Phone: 0049/2407/9596-0 • Telefax: 0049/2407/9596-9 Internet: www.shaker.de • e-mail: info@shaker.de

### Preface

This work evolved during my time as a research assistant at the Max Planck Institute for Dynamics of Complex Technical Systems in Magdeburg. I have been lucky to encounter as a part of the Systems Biology Group headed by Prof. Ernst Dieter Gilles an inspiring and cooperative working atmosphere, which was shaped by Prof. Gilles' scientific curiosity in all the projects and by his interest in the people behind the work. Later, I was part of the research group Analysis and Redesign of Biological Networks headed by Steffen Klamt. This work would not be what it is without Steffen's continuous support. Throughout the entire time, I could count on his encouragement and in-depth discussions and on an open door and ear whenever I needed an advice.

During my early time at the Max Planck Institute, I had with Julio Saez Rodriguez a great tutor who introduced me to the logical modeling of signaling networks and to the modeling tool PROMOT. I gratefully acknowledge the support of the PROMOT Development Team, in particular Sebastian Mirschel and Katrin Kolczyk, and the support of Axel von Kamp with regards to CellNetAnalyzer issues. My special thanks go to Jérémy Huard, with whom I shared the office over a long time, for his help in any Linux, LaTeX, Matlab, or PROMOT topic, just to name a few. I am also very grateful to Renate Wagner, Janine Holzmann and Anke Goettert for all their effort to assist the whole group and to provide a very comfortable working atmosphere.

The last chapter of this work would not exist without the substantial support of Dietrich Flockerzi. He always found the time to recalculate and discuss all my results, to help to sharpen the mathematical formulations and to explain everything to me with a great patience. I also want to thank Carsten Conradi for all discussions and advice about Chemical Reaction Network Theory.

I would like to express my gratitude to my collaboration partners Leonidas Alexopoulos, Iannis Melas, Seong-Hwan Rho, and Tim Maiwald, for our fruitful cooperations. Special thanks to Lorenza D'Alessandro for our intensive collaboration and friendship throughout the years. Thanks for all the open discussions, your great commitment and scientific enthusiasm. I am grateful to Prof. Rolf Findeisen, who accepted to co-advice and review this thesis.

All in all, I want to thank all my colleagues from the Max Planck Institute in Magdeburg for the enjoyable and inspiring time we had together.

My warmest thanks go to my family, for all their support, sympathy, and love.

The work presented in this thesis was part of the Systems Biology funding initiatives *HepatoSys* and *The Virtual Liver Network*, which were both financially supported by the German Federal Ministry of Education and Research.

Dachau, 2018

Regina Samaga

### Contents

| Li | List of Figures |        |            | vii                                                  |      |
|----|-----------------|--------|------------|------------------------------------------------------|------|
| Li | List of Tables  |        |            |                                                      |      |
| Zı | Zusammenfassung |        |            |                                                      | xiii |
| 1  | Intr            | oducti | on         |                                                      | 1    |
| 2  | Sys             | tems E | Biology o  | f Signal Transduction Networks                       | 5    |
|    | 2.1             | Cell S | bignaling  |                                                      | 5    |
|    | 2.2             | Liver  | Regenera   | tion                                                 | 6    |
|    | 2.3             | Signa  | ling throu | igh the EGF Ligand Family and through HGF $\ldots$ . | 6    |
|    |                 | 2.3.1  | The Sig    | naling System of the EGF Ligand Family               | 6    |
|    |                 | 2.3.2  | Hepato     | cyte Growth Factor Signaling                         | 10   |
|    | 2.4             | Mode   | ling App   | roaches for Signaling Networks                       | 11   |
|    |                 | 2.4.1  | Interact   | ion Graphs                                           | 11   |
|    |                 |        | 2.4.1.1    | Cycles in Interaction Graphs                         | 13   |
|    |                 |        | 2.4.1.2    | Dependency Matrix                                    | 14   |
|    |                 |        | 2.4.1.3    | Minimal Cut Sets                                     | 15   |
|    |                 | 2.4.2  | Logical    | Models of Signal Transduction Networks               | 16   |
|    |                 |        | 2.4.2.1    | Hypergraph Representation of Logical Models          | 18   |
|    |                 |        | 2.4.2.2    | Dynamical Analysis of Logical Models                 | 20   |
|    |                 |        | 2.4.2.3    | Logical Steady State and Signal Flow Analysis        | 21   |
|    |                 |        | 2.4.2.4    | Minimal Intervention Sets                            | 24   |
|    |                 | 2.4.3  | Ordinai    | y Differential Equation Modeling                     | 26   |
|    |                 |        | 2.4.3.1    | Differential Equation Models Derived from Boolean    |      |
|    |                 |        |            | Models                                               | 26   |
|    |                 |        | 2.4.3.2    | Qualitative Analysis of Dynamical Models             | 27   |

| 3                                                | Dat                                        | a-Drive                                                  | en Interro                                                     | ogation and Training of Signaling Network Structures  | 5  |  |
|--------------------------------------------------|--------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------|----|--|
|                                                  | Based on Interaction Graphs 33             |                                                          |                                                                |                                                       |    |  |
| 3.1 Data Analysis Based on the Dependency Matrix |                                            |                                                          |                                                                |                                                       | 34 |  |
|                                                  | 3.2                                        | Detect                                                   | tion and Removal of Inconsistencies between Data and Signaling |                                                       |    |  |
|                                                  |                                            | Network Topologies Using the Concept of Sign Consistency |                                                                |                                                       |    |  |
|                                                  |                                            | 3.2.1                                                    | General                                                        | Framework                                             | 38 |  |
|                                                  | 3.2.2 Formulation as Optimization Problems |                                                          |                                                                | 43                                                    |    |  |
|                                                  |                                            |                                                          | 3.2.2.1                                                        | Basic Definitions and Formulation of Sign Consistency | 43 |  |
|                                                  |                                            |                                                          | 3.2.2.2                                                        | SCEN_FIT Optimization Problem                         | 44 |  |
|                                                  |                                            |                                                          | 3.2.2.3                                                        | MCoS Optimization Problem                             | 45 |  |
|                                                  |                                            |                                                          | 3.2.2.4                                                        | OPT_SUBGRAPH Optimization Problem                     | 47 |  |
|                                                  |                                            |                                                          | 3.2.2.5                                                        | OPT_GRAPH Optimization Problem                        | 48 |  |
|                                                  | 3.3                                        | Appli                                                    | cation to                                                      | ERBB Signaling                                        | 48 |  |
|                                                  |                                            | 3.3.1                                                    | The Inte                                                       | eraction Graph Model of ERBB Signaling                | 49 |  |
|                                                  |                                            | 3.3.2                                                    | Analysis                                                       | s of High-Throughput Experimental Data                | 51 |  |
|                                                  |                                            |                                                          | 3.3.2.1                                                        | Data Description and Discretization                   | 51 |  |
|                                                  |                                            |                                                          | 3.3.2.2                                                        | Analysis with the Dependency Matrix                   | 53 |  |
|                                                  |                                            |                                                          | 3.3.2.3                                                        | Analysis Based on Sign Consistency                    | 61 |  |
|                                                  | 3.4                                        | Discu                                                    | ssion                                                          |                                                       | 74 |  |
| 4                                                | Log                                        | ical Mo                                                  | dels of S                                                      | Signal Transduction Networks                          | 79 |  |
|                                                  | 4.1                                        | Specie                                                   | es Equival                                                     | lence Classes                                         | 79 |  |
|                                                  | 4.2                                        | Comp                                                     | utation o                                                      | f Intervention Strategies and Failure Modes           | 81 |  |
|                                                  |                                            | 4.2.1                                                    | Definitio                                                      | on of Minimal Intervention Sets and General Algorithm | 81 |  |
|                                                  |                                            | 4.2.2                                                    | Method                                                         | s for Search Space Reduction                          | 83 |  |
|                                                  |                                            |                                                          | 4.2.2.1                                                        | Exploiting Dependencies                               | 83 |  |
|                                                  |                                            |                                                          | 4.2.2.2                                                        | Exploiting Fault Equivalence Classes                  | 85 |  |
|                                                  |                                            |                                                          | 4.2.2.3                                                        | Exploiting Dependencies in Intervention Goals with    |    |  |
|                                                  |                                            |                                                          |                                                                | Multiple Targets                                      | 88 |  |
|                                                  | 4.3                                        | Analy                                                    | sis of Exp                                                     | perimental Data                                       | 90 |  |
|                                                  | 4.4                                        | The L                                                    | ogic of El                                                     | RBB Signaling                                         | 91 |  |
|                                                  |                                            | 4.4.1                                                    | From a s                                                       | Stoichiometric Model to a Logical Model               | 92 |  |
|                                                  |                                            | 4.4.2                                                    | Theoret                                                        | ical Analysis of the Logical ERBB Model               | 96 |  |
|                                                  |                                            |                                                          | 4.4.2.1                                                        | Qualitative Input–Output Behavior                     | 96 |  |
|                                                  |                                            |                                                          | 4.4.2.2                                                        | Species Equivalence Classes in the ERBB Model         | 98 |  |

|   |      |         | 4.4.2.3    | Computation of Minimal Intervention Sets in the   |     |
|---|------|---------|------------|---------------------------------------------------|-----|
|   |      |         |            | Logical ERBB Model                                | 98  |
|   |      | 4.4.3   | Data Ar    | alysis                                            | 104 |
|   | 4.5  | Discus  | ssion      |                                                   | 110 |
| 5 | From | n Stru  | cture to   | Dynamics: Combined Interaction Graph and OD       | E   |
|   | Мос  | leling  | Unravels   | Network Structure of HGF Signaling                | 115 |
|   | 5.1  | An In   | teraction  | Graph Model of HGF Signaling                      | 117 |
|   | 5.2  | Exper   | imental E  | Data                                              | 118 |
|   | 5.3  | Select  | ion of Mi  | nimal Model Structures                            | 121 |
|   | 5.4  | Transl  | ation into | Ordinary Differential Equation Models             | 128 |
|   | 5.5  | Ordin   | ary Diffe  | rential Equation Model Selection                  | 130 |
|   | 5.6  | Exper   | imental V  | alidation and Model Predictions                   | 134 |
|   |      | 5.6.1   | Experim    | nental Validation of a Negative Crosstalk         | 134 |
|   |      | 5.6.2   | Inhibito   | r Combination: Model Predictions and Experimental |     |
|   |      |         | Validatio  | on                                                | 136 |
|   | 5.7  | Discus  | ssion      |                                                   | 139 |
| 6 | Pre  | diction | of Quali   | tative Dynamics from Network Structure            | 141 |
|   | 6.1  | Pertur  | bation A   | nalysis for General ODE Systems                   | 142 |
|   |      | 6.1.1   | General    | Framework                                         | 142 |
|   |      | 6.1.2   | Determi    | nants and Graphs                                  | 146 |
|   |      | 6.1.3   | A Graph    | n-Theoretic Criterion for Initial Response        | 149 |
|   |      | 6.1.4   | Determi    | nant Criteria for Ultimate System Response        | 149 |
|   |      | 6.1.5   | Some G     | raph-Theoretic Implications                       | 153 |
|   | 6.2  | Pertur  | bation A   | nalysis for Chemical Reaction Networks            | 155 |
|   |      | 6.2.1   | Dynami     | c Chemical Reaction Networks                      | 156 |
|   |      | 6.2.2   | Determi    | nant Criteria for Ultimate Response of Chemical   |     |
|   |      |         | Reactior   | Networks                                          | 160 |
|   |      | 6.2.3   | Graphic    | al Representation of Dynamic Chemical Reaction    |     |
|   |      |         | Networl    | ks                                                | 166 |
|   |      |         | 6.2.3.1    | Labeled Interaction Graphs and R-Subgraphs        | 167 |
|   |      |         | 6.2.3.2    | Species-Reaction Graphs and Directed Species-     |     |
|   |      |         |            | Reaction Graphs                                   | 170 |
|   |      |         | 6.2.3.3    | Interrelation between Labeled Interaction Graphs  |     |
|   |      |         |            | and Directed Species–Reaction Graphs              | 175 |

|    |                                                                      | 6.2.4    | Necessary Motifs for Inverse Response                           | 176 |  |  |  |
|----|----------------------------------------------------------------------|----------|-----------------------------------------------------------------|-----|--|--|--|
|    |                                                                      | 6.2.5    | Relation to Multistationarity                                   | 186 |  |  |  |
|    | 6.3                                                                  | Discus   | ssion                                                           | 191 |  |  |  |
| 7  | Con                                                                  | clusion  | 15                                                              | 195 |  |  |  |
| A  | Integer Linear Programming Formulations for Interaction Graph Train- |          |                                                                 |     |  |  |  |
|    | ing                                                                  |          |                                                                 | 197 |  |  |  |
|    | A.1                                                                  | Implei   | mentation                                                       | 197 |  |  |  |
|    | A.2                                                                  | ILP Fc   | prmulation of Sign Consistency                                  | 197 |  |  |  |
|    | A.3                                                                  | ILP Fc   | prmulation of SCEN_FIT                                          | 199 |  |  |  |
|    | A.4                                                                  | ILP Fc   | prmulation of MCoS                                              | 200 |  |  |  |
|    | A.5                                                                  | ILP Fc   | prmulation of OPT_SUBGRAPH                                      | 201 |  |  |  |
| В  | Mod                                                                  | lel Con  | pression for Interaction Graphs                                 | 203 |  |  |  |
| с  | Doc                                                                  | umenta   | ation of ERBB Models                                            | 205 |  |  |  |
|    | C.1                                                                  | List of  | Species                                                         | 205 |  |  |  |
|    | C.2                                                                  | List of  | Interactions of the Logical ERBB Model (M1)                     | 211 |  |  |  |
|    | C.3                                                                  | Intera   | ctions that are only included in ERBB interaction graph model . | 227 |  |  |  |
|    | C.4                                                                  | Descri   | ption of Model M2                                               | 228 |  |  |  |
| D  | Sen                                                                  | sitiviti | es of Binarization of HepG2 Data to Chosen Parameters           | 229 |  |  |  |
| Е  | Doc                                                                  | umenta   | ation of the HGF Interaction Graph Master Model                 | 233 |  |  |  |
|    | E.1                                                                  | List of  | Species                                                         | 233 |  |  |  |
|    | E.2                                                                  | List of  | Interactions of the HGF Core Model                              | 235 |  |  |  |
|    | E.3                                                                  | List of  | Candidate Mechanisms                                            | 237 |  |  |  |
| F  | Doc                                                                  | umenta   | ation of HGF ODE Models                                         | 239 |  |  |  |
|    | F.1                                                                  | Reacti   | ons in the ODE Models                                           | 239 |  |  |  |
|    |                                                                      | F.1.1    | Reactions in the Core Model                                     | 239 |  |  |  |
|    |                                                                      | F.1.2    | Candidate mechanisms                                            | 241 |  |  |  |
|    | F.2                                                                  | Param    | eter Names and Values of the Final Model Structure              | 242 |  |  |  |
| G  | Proc                                                                 | ofs from | n Chapter 6                                                     | 245 |  |  |  |
| Bi | Bibliography 249                                                     |          |                                                                 |     |  |  |  |

# List of Figures

| 1.1               | Different modeling formalisms for cellular signaling                                                                                                                                          | 4              |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| 2.1<br>2.2<br>2.3 | Interaction graph of the EGF/NRG1 network example<br>Dependency matrix of the EGF/NRG1 example model<br>Logical model of the EGF/NRG1 network example                                         | 9<br>16<br>20  |
| 3.1<br>3.2<br>3.3 | A simple example network used for illustration purposes.        Interaction Graph Model of ERBB Signaling        Data set of TGFα-stimulated primary human hepatocytes and HepG2        cells | 37<br>50<br>52 |
| 3.4               | Data set from HepG2 cells, stimulated with five different EGF-like                                                                                                                            |                |
|                   | ligands                                                                                                                                                                                       | 54             |
| 3.5               | Dependency matrix of ERBB interaction graph model, main activation routes                                                                                                                     | 56             |
| 3.6               | Comparison between experimental data from primary hepatocytes                                                                                                                                 |                |
| 3.7               | and ERBB model predictions derived from the dependency matrix Comparison between experimental data from HepG2 cells and ERBB                                                                  | 57             |
|                   | model predictions derived from the dependency matrix                                                                                                                                          | 58             |
| 3.8               | Interaction graph model of the ERBB signaling network, processed                                                                                                                              |                |
| 3.9               | for ILP approach                                                                                                                                                                              | 64             |
|                   | ERBB interaction graph model.                                                                                                                                                                 | 66             |
| 3.10              | Cumulative fitting error of optimal SCEN_FIT solutions over all 16 scenarios in the ERBB network as a function of the two discretization                                                      |                |
|                   | thresholds                                                                                                                                                                                    | 67             |
| 3.11              | Optimal model structures derived from the compressed ERBB model<br>by applying OPT_SUBGRAPH and OPT_GRAPH procedures                                                                          | 69             |
| 3.12              | Discretized data and the two SCEN_FIT solutions that result from the                                                                                                                          |                |
|                   | optimal subgraphs given in Figure 3.11(a).                                                                                                                                                    | 72             |
|                   |                                                                                                                                                                                               |                |

| 3.13 | Comparison of the fitting errors of the initial model structure and of                   |     |
|------|------------------------------------------------------------------------------------------|-----|
|      | the optimal interaction graph                                                            | 73  |
| 4.1  | Pseudocode for the computation of minimal intervention sets                              | 89  |
| 4.2  | Examples illustrating the translation of the stoichiometric EGFR                         |     |
|      | model into a logical description.                                                        | 93  |
| 4.3  | Logical model of the ERBB receptor signaling pathway represented in                      |     |
|      | РкоМоТ                                                                                   | 95  |
| 4.4  | Species equivalence classes in the logical ERBB model                                    | 99  |
| 4.5  | Sensitivities of the binarization to the chosen parameters (primary                      |     |
|      | human hepatocytes)                                                                       | 105 |
| 4.6  | Comparison of the discretized data with predictions from the logical                     |     |
|      | model                                                                                    | 107 |
| 4.7  | Comparison of the discretized data with predictions from model $\ensuremath{M2}$ .       | 108 |
| 5.1  | Workflow of model selection strategy                                                     | 116 |
| 5.2  | Interaction graph master model                                                           | 119 |
| 5.3  | Experimental results                                                                     | 120 |
| 5.4  | Discretized experimental data                                                            | 121 |
| 5.5  | $Predictions \ by \ interaction \ graph \ models \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $ | 123 |
| 5.6  | Pseudocode for the selection of minimal model structures from the                        |     |
|      | interaction graph master model                                                           | 125 |
| 5.7  | Pseudocode for the comparison of model predictions with discretized                      |     |
|      | data                                                                                     | 126 |
| 5.8  | Selected minimal model structures, core and complete model $\ .\ .\ .$                   | 127 |
| 5.9  | Underlying interaction graph of the complete ODE model $\ .\ .\ .$ .                     | 129 |
| 5.10 | ODE model selection                                                                      | 131 |
| 5.11 | ODE model fit                                                                            | 133 |
| 5.12 | Negative crosstalk: experimental validation                                              | 136 |
| 5.13 | Model predictions of inhibitor combinations $\ldots \ldots \ldots \ldots$                | 137 |
| 5.14 | Inhibitor combinations: experimental validation                                          | 138 |
| 6.1  | Scheme illustrating initial, inverse, and compensatory response                          | 144 |
| 6.2  | Scheme of dual phosphorylation and dephosphorylation mechanism .                         | 163 |
| 6.3  | Chemical reaction network with bimolecular reaction                                      | 167 |
| 6.4  | Labeled interaction graph and R-subgraphs of order 3 for the example                     |     |
|      | system (6.36)                                                                            | 171 |

| 6.5 | SR graphs for the CRN example (6.36)                       | 174 |
|-----|------------------------------------------------------------|-----|
| 6.6 | DSR graph for the CRN example (6.37)                       | 175 |
| 6.7 | R-subgraphs corresponding to amplifying motifs for the CRN |     |
|     | example (6.36) taken with NAC kinetics                     | 190 |
| 6.8 | R-subgraphs for the CRN example (6.36) taken with weakly   |     |
|     | monotonic kinetics                                         | 192 |
| B.1 | Basic network compression rules for interaction graphs     | 204 |
| D.1 | Sensitivity to Parameter for Relative Significance         | 229 |
| D.2 | Sensitivity to Parameter for Absolute Significance         | 230 |
| D.3 | Sensitivity to Parameter for Experimental Noise            | 231 |

## List of Tables

| 2.1 | Logical steady states in the EGF/NRG1 example model                  | 23  |
|-----|----------------------------------------------------------------------|-----|
| 2.2 | Minimal intervention sets in the EGF/NRG1 logical model              | 25  |
| 3.1 | Example scenarios and optimizations for the example network in       |     |
|     | Figure 3.1                                                           | 40  |
| 3.2 | Proposed ERBB model changes to improve agreement between             |     |
|     | interaction graph model structure and experimental data              | 61  |
| 3.3 | MCoS for scenario 11 in Figure 3.9                                   | 68  |
| 3.4 | Optimal subgraphs that fit the discretized data shown in Figure 3.9. | 70  |
| 3.5 | Suggestions for new single edges as computed by OPT_GRAPH            | 72  |
| 4.1 | Species equivalence classes in the Logical ERBB models M1 and M2.    | 100 |
| 4.2 | Minimal intervention sets of size 2 to activate ERK1/2 and AKT in    |     |
|     | the ERBB model                                                       | 101 |
| 4.3 | Benchmark tests showing the power of reduction techniques for the    |     |
|     | computation of minimal intervention sets                             | 103 |
| 4.4 | Proposed ERBB model changes to improve agreement between model       |     |
|     | structure and experimental data                                      | 111 |
| 5.1 | Candidate edges of selected models, model combinations, and          |     |
|     | random models                                                        | 135 |
| 6.1 | Example 6.51, analysis of initial and ultimate response to positive  |     |
|     | perturbation in $E_1$                                                | 166 |

### Zusammenfassung

An den Signaltransduktionsvorgängen in der Zelle ist eine Vielzahl von Molekülen beteiligt, die sich gegenseitig beeinflussen. Diese Moleküle bilden komplexe, hoch regulierte Signalnetzwerke. Um ein ganzheitliches Verständnis von diesen Netzwerken zu erhalten, werden Methoden der Systembiologie eingesetzt, welche mathematische und computergestützte Methoden mit experimentellen Daten kombinieren. Die experimentellen Daten, die zur Verfügung stehen, ermöglichen es zum Teil, detaillierte quantitative Informationen zu erhalten; manchmal liefern sie jedoch auch nur ein qualitatives Bild. Bei manchen Signalwegen ist die Netzwerktopologie bereits im Detail bekannt, bei anderen ist diese gänzlich unbekannt. Um diesen Unterschieden in der Qualität der vorliegenden Information zu begegnen, wurden in den letzten Jahren Modellierungsmethoden von unterschiedlicher Komplexität entwickelt.

Physiko-chemische Modellierungsmethoden, beispielsweise gewöhnliche Differentialgleichungssysteme mit Massenwirkungskinetiken, erlauben eine detaillierte Beschreibung des zeitlichen Systemverhaltens. Diese Art der Modellierung erfordert eine gute Kenntnis der biologischen Mechanismen und kinetischen Parameter, so dass die Anwendung auf kleinere und bereits relativ gut beschriebene Netzwerke beschränkt ist.

Im Gegensatz dazu stehen qualitative Modellierungsmethoden, die hauptsächlich die Netzwerkstruktur beschreiben und keine Information über die kinetischen Parameter benötigen. Somit sind diese Methoden im Allgemeinen für großskalige Netzwerke geeignet. Einfache Graphenmodelle, bei denen die biologischen Species als Knoten und die Interaktionen zwischen den Species als Kanten dargestellt werden, wurden bisher hauptsächlich zur Beschreibung topologischer Eigenschaften von Netzwerken mit bis zu mehreren Tausend Proteinen eingesetzt. Erweiterte Graphenmodelle, wie zum Beispiel Constraint-based Modellierung, Petrinetze oder Logische Netzwerke leiten sich auch rein von der Netzwerkstruktur ab, ermöglichen jedoch die Analyse wichtiger funktionaler Eigenschaften und ermöglichen darüberhinaus bestimmte Vorhersagen zum qualitativen Systemverhalten.

Parameterfreie Methoden im Kontext der gewöhnlichen Differentialgleichungssy-

steme haben zum Ziel, Aussagen über das qualitative dynamische Verhalten eines Systems zu treffen. Eine typische Frage ist beispielsweise, ob die Stuktur eines gegebenen Differentialgleichungssystems ein bestimmtes dynamisches Verhalten ermöglicht, das heißt ob es Parameterwerte gibt, mit denen das System beispielsweise mehrere stationäre Lösungen besitzt oder Oszillationen zeigt. Auch wenn diese Methoden parameterfrei sind, so ist dennoch ein detailliertes mechanistisches Verständnis der einzelnen Reaktionen nötig.

In der vorliegenden Arbeit wurden mathematische Modellierungsmethoden entwickelt, um die Netzwerkstruktur von zellulären Signaltransduktionswegen anhand experimenteller Daten und qualitativer Beobachtungen der Dynamik zu analysieren. Dabei wurden drei verschiedene Modellierungsformalismen eingesetzt: Interaktionsgraphen, logische Modelle und gewöhnliche Differentialgleichungssysteme. Diese drei Formalismen hängen eng miteinander zusammen. Ein Interaktionsgraph beschreibt paarweise Zusammenhänge zwischen biologischen Species. Ein logisches Modell kann von einem Interaktionsgraph abgeleitet werden, indem logische Regeln ergänzt werden, die beschreiben, wie verschiedene Eingänge an einem Knoten des Graphen kombiniert werden. Bestimmte Systemeigenschaften eines gewöhnlichen Differentialgleichungssystems können anhand des zugrundeliegenden Interaktionsgraphen abgeleitet werden, welcher die Vorzeichenstruktur der Jacobi-Matrix des Systems repräsentiert. In dieser Arbeit wird gezeigt, dass insbesondere die Kombination der verschiedenen Modellierungsmethoden von unterschiedlicher Komplexitiät es ermöglicht, wichtige Erkenntnisse über die Struktur und Funktion von Signaltransduktionswegen zu erhalten. Als Anwendungsbeispiele wurden Modelle der Signalwege des Epidermalen Wachtumsfaktors (EGF) und des Hepatozyten-Wachstumsfaktors (HGF) erstellt und analysiert, was neue Einblicke in diese Singalwege ermöglichte. Beide Wege spielen eine zentrale Rolle bei der Leberregeneration.

Basierend auf Informationen aus der Literatur wurde ein großskaliges Modell der Signalwege erstellt, die von der Familie der EGF Liganden aktiviert werden. Dieses Interaktionsgraph-Modell wird in dieser Arbeit präsentiert. Neue Methoden und Algorithmen zur Analyse der Netzwerkstruktur – basierend auf Interaktionsgraphen – werden beschrieben. Die Anwendung dieser Methoden auf das EGF Modell zeigt, dass Abweichungen zwischen den experimentellen Daten und der kanonischen Netzwerkstruktur bestehen, welche zum Teil Zelltyp-abhängig sind. Dies erlaubte die Formulierung von neuen Hypothesen. Außerdem werden Erweiterungen eines bestehenden Formalismus zur statischen Analyse von logischen Modellen präsentiert. Diese beinhalten unter anderem neue Algorithmen zur Berechnung von Interaktionsstrategien. Zudem wird gezeigt, wie das qualitative Input-Output Verhalten automatisiert mit diskretisierten experimentellen Daten verglichen werden kann. Die Anwendung dieser neuen Methoden auf ein ebenfalls innerhalb dieser Arbeit erstellten logischen Modells ergänzt die Ergebnisse der Analyse des Interaktionsgraph-Modells. In einem neuen Modellierungsansatz, der in dieser Arbeit präsentiert wird, werden qualitative und quantitative Modellierungsmethoden miteinander kombiniert. Gezeigt wird die Analyse der HGF-induzierten Aktivierung zweier zentraler Signaltransduktionswege. Eine datengetriebene Analyse ermöglicht es, aus einer Vielzahl von möglichen Modellstrukturen, die sich aus der Kombination verschiendener Crosstalk- und Feedback-Mechanismen ergeben, eine Vorselektion verschiedener Interaktionsgraph-Modelle zu treffen. Eine darauffolgende Analyse mit gewöhnlichen Differentialgleichungssystemen erlaubt, die Netzwerkstruktur zu identifizieren, die das transiente dynamische Verhalten, welches in den experimentellen Daten widergespiegelt wird, am besten beschreibt. Die Differentialgleichungssysteme wurden dabei von den vorselektierten Interaktionsgraphen abgeleitet. Im letzten Teil der Arbeit werden Interaktionsgraphen analysiert, die einem gewöhnlichen Differentialgleichungssystem zu Grunde liegen. Es werden neue graphentheoretische und algebraische Methoden präsentiert, die es ermöglichen, bestimmte steady-state Antworten auf Perturbationen für chemische Reaktionsnetzwerke auszuschließen. Schließlich wird die Verbindung zu bereits bekannten strukturellen Bedingungen für mehrfach stationäre Zustände gezeigt.