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Editorial

The state of many electrochemical systems such as automotive catalysts or diesel
particulate filters (DPF) can be inferred from the spatial distribution of electric material
parameters. The direct measurement of such distributions, based on the interaction
between microwaves and the electrochemical system, has been described quite
thoroughly in the literature by now, but these results are based on equipment such as
vector network analyzers (VNA) which cannot be used as field devices (e. g, in a

vehicle) for cost and size reasons.

The present work investigates whether the method could be implemented on the basis
of available communication systems. To this end, the catalyst is placed in the
propagation path of a communication link, or rather the propagation path is confined
to the interior of the catalyst housing. It is experimentally demonstrated that stochastic
communication channel parameters such as the bit and packet error ratios, the signal-
to-noise ratio, and the center of gravity of the transmit signal pulse mirror the material

parameters in the propagation path.

In the course of the work, a UWB (ultra wideband) system was used by way of an
example to investigate the fundamental practicability of the approach and to determine
the influence of system parameter settings such as Tx power and data rate on
measurement system characteristics such as uncertainty and measurement time. The
test objects used in the studies were DPFs with different soot loads and discs of known
material composition (PTFE, PE, PC, POM).

The investigations indicate that a proper choice of system settings is crucial for the
measurement to produce useful results. Data rates on the order of 100 to 1000 kbit/s
and Tx powers neither too small nor too large allow one to measure bit or packet error
ratios with a relative uncertainty on the order of 1 % within measurement times on the

order of 1 s. Higher data rates enable faster measurements.

The results corroborate the proposition that the monitoring of electrochemical systems
in the field can be based on potentially inexpensive microwave communication

systems.

Bayreuth, August 2018
Prof. Dr.-Ing. Gerhard Fischerauer, Prof. Dr.-Ing. Ralf Moos
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