Luft- und Raumfahrttechnik

Daniel Kaufer

Validation and Applicability of an Integrated Load Simulation Method for Offshore Wind Turbines with Jacket Structures

Validation and Applicability of an Integrated Load Simulation Method for Offshore Wind Turbines with Jacket Structures

A thesis accepted by the Faculty of Aerospace Engineering and Geodesy of the University Stuttgart in partial fulfilment of the requirements for the degree of Doctor of Engineering Sciences (Dr.-Ing.)

by

Daniel Kaufer born in Großröhrsdorf

Main referee:	Prof. Dr. Po Wen Cheng
Co-referee:	Prof. Dr. Michael Muskulus
Day of defence	27.11.2017

Institute of Aircraft Design University Stuttgart 2018

Daniel Kaufer

Validation and Applicability of an Integrated Load Simulation Method for Offshore Wind Turbines with Jacket Structures

D 93 (Diss. Universität Stuttgart)

Shaker Verlag Aachen 2018

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available in the Internet at http://dnb.d-nb.de.

Zugl.: Stuttgart, Univ., Diss., 2017

Copyright Shaker Verlag 2018 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the publishers.

Printed in Germany.

ISBN 978-3-8440-6069-0 ISSN 0945-2214

Shaker Verlag GmbH • P.O. BOX 101818 • D-52018 Aachen Phone: 0049/2407/9596-0 • Telefax: 0049/2407/9596-9 Internet: www.shaker.de • e-mail: info@shaker.de

Acknowledgement

I am very grateful to many people for their support to successfully complete my PhD. It is not possible to mention all, but I would like to thank the most related persons.

First, I would like to thank my supervisor Prof. Dr Po Wen Cheng for his constructive support, new ideas and contributions to finish the PhD and the board of examiners Prof. Dr.-Ing. Tim Ricken and Prof. Dr. Michael Muskulus for their thorough check and acceptance of my doctoral thesis.

Many thanks also to Prof. Dr. Martin Kühn who has initiated and motivated me to start the PhD at the University Stuttgart. In the same way I would like to thank Andreas Rettenmeier, who was truly an inspiring mentor to me. Most likely I would not be where I am without their trust and support.

I thank Ursula Smolka, Jan Quappen, Cord Böker, Jan Dubois, Frank Ostermann, Marc Seidel, Fabian Vorpahl for their great support, helpful feedback and the professional collaboration in the research activities across alpha ventus and our joint research projects.

Along the path at the University Stuttgart I had the pleasure to meet and to work with many amazing colleagues at the SWE and IFB in a unique atmosphere. I would also thank Sarah Lott, Sebastian Schafhirt, Konstantinos Diamantidis, Philip Göbel, Oliver Zirn, Bernhard Feistle, Lutz Kräckel, Tanja Jenter and Hans Wackler, who are former diploma, master and bachelor students, to push and challenge me and my research activities. Thanks also to the Inventus Racing Team for the awesome time in the lab and on the dyke. I am happy to see that many of them are working successful in wind energy.

Special thanks also to Anne Jagemann, Silvia Kaufer and Thomas von Borstel for sharing your valuable time when proofreading the first version of the thesis.

Finally, this long journey would not be possible without the patience, help and support of my beloved family and friends.

v

Table of Contents

Та	able o	f Co	ntents	vii
Table of Figuresx			х	
Li	st of 1	Table	25	xvii
Li	st of A	Abbr	eviationsx	viii
Li	st of S	Symb	ools	хх
A	ostrac	:t	ж	xiii
Ζı	ısamr	nenf	assung	xxv
1	Int	trodu	uction	1
Ť	1 1	Stat	tus of Offshore Wind and Design Challenges	1
	1.1	Stat	tus of Integrated Load Simulation and Measurements	
	1.3	Obi	ectives and Structure of the Thesis	7
2	De	cian	Fundamentals of Offshore Wind Turking Systems	٥
2	2 1		any of the Design Process	و
	2.1	Ter	minology and Concents of Offshore Wind Turbines	10
	2.2	loa	d Assumptions and Dynamics	13
	2.3	3.1	Sources and Effects of Loading	. 13
	2.3	3.2	Met-Ocean Conditions	. 15
	2.4	Мо	delling and Load Simulation	. 18
	2.4	4.1	The Modelling Process	. 18
	2.4	1.2	Mechanical Models	. 19
	2.4	4.3	Mathematical Consideration of Mechanical Models	. 22
	2.4	1.4	Applied Models and Design Procedures in Industry	. 30
	2.5	Me	thods for the Design Assessment	. 33
	2.6	Lim	itations of Conventional Design Methods	. 36
3	Im	plen	nentation and Verification of an Integrated Simulation Method	37
	3.1	Ove	erview of the Fully-Coupled Approach for Integrated Load Simulations	. 37
	3.2	1.1	Description of the Approach	. 37
	3.2	1.2	Synthesis of the Equations of Motion	. 40
	3.2	1.3	Interface for Flex5-Poseidon	. 41
	3.2	1.4	Interface for Flex5-ANSYS	. 43
	3.2	Мо	dels for Verification	. 45
	3.3	Ver	ification using Simplified Deterministic Load Cases	. 46
	3.4	Ver	ification using Combined Aero- and Hydrodynamic Loading	. 50

	3.4	l.1	Verification using OC3 Project Results	51
	3.4	1.2	Verification using OC4 Project Results	53
	3.5	Sun	nmary	56
4	Wi	ind F	arm Alpha Ventus and the Measurements	58
	4.1	Ove	erview on Alpha Ventus	58
	4.2	Des	scription of the Measurement Campaign	59
	4.3	Sel	ection and Preparation of the Measurement Data	61
	4.4	Loc	ation of the Measurement Sensors	64
	4.4	l.1	Met-Ocean Data	64
	4.4	1.2	Rotor Blade Measurements	65
	4.4	1.3	Tower Section Measurements	65
	4.4	1.4	Jacket Substructure Measurements	66
5	Va	lidat	tion of the Integrated Simulation Method	68
	5.1	Bas	eline Model of the AV4	69
	5.1	.1	Wind Turbine and Tower Description	69
	5.1	.2	Substructure and Foundation Model	70
	5.1	.3	Reference Coordinate Systems	73
	5.2	Cor	nparison of Natural Frequencies	75
	5.3	Val	idation of Wind Turbine Characteristic Curves	77
	5.4	Val	idation based on Nacelle Rotation Analysis	78
	5.4	1.1	Boundary Conditions of Analysis	78
	5.4	1.2	Rotor Blade Loads	79
	5.4	1.3	Tower Loads	81
	5.4	1.4	Jacket Stresses	86
	5.5	Val	idation based on Comparisons in Time- and Frequency Domain	90
	5.5	5.1	Boundary Conditions for Analysis	90
	5.5	5.2	Rotor Blade Loads	91
	5.5	5.3	Tower Loads	94
	5.5	5.4	Jacket Stresses	95
	5.6	Sta	tistical Validation during Normal Operation	97
	5.6	5.1	Preparation of Simulation Input Data	97
	5.6	5.2	Rotor Blade Loads	99
	5.6	5.3	Tower Loads	101
	5.6	5.4	Jacket Stresses	102
	5.7	Sta	tistical Validation during Idling Operation	104
	5.7	7.1	Preparation of Simulation Input Data	104
	5.7	7.2	Rotor Loads	106

	5.	7.3	Tower Loads	107
	5.	7.4	Jacket Stresses	108
	5.8	Vali	dation of Damage Equivalent Loads and Load Cycle Distributions	109
	5.	8.1	Preliminary Assumptions	109
	5.	8.2	Preparation of Simulation Input Data	111
	5.	8.3	Rotor Blade Loads	112
	5.	8.4	Tower Loads	115
	5.	8.5	Jacket Stresses	116
	5.9	Sum	nmary of Results	121
	5.10	D	iscussion of Uncertainties	125
6	Im	pact	of Coupling Methods on Fatigue Loads	128
	6.1	Met	thod Overview	128
	6.2	Offs	hore Wind Turbine and Substitute Models	131
	6.	2.1	Model for the Fully-Coupled Approaches I+IV	131
	6.	2.2	Model for the Semi-Integrated Coupling Approach II+III	131
	6.3	Loa	d Cases and Fatigue Result Comparison	135
	6.	3.1	Natural Frequency Analysis	136
	6.	3.2	$\label{eq:comparison} \mbox{ Comparison of the Fully-Coupled with the Semi-Integrated Method \dots}$	137
	6.	3.3	$\label{eq:comparison} \mbox{ Comparison of the Fully-Coupled with the Decoupled Load Method \dots}$	140
	6.	3.4	Comparison of the Fully-Coupled with the Rigid-RNA Method	143
	6.4	Sum	nmary of Results	146
7	Co	onclu	sions and Recommendations	148
	7.1	Con	clusions	148
	7.2	Rec	ommendations and Future Work	154
A	ppen	dix A	Identification of Damaged Measurements of AV4	161
A	ppen	dix B	Measurement Locations at the Jacket	164
A	ppen	dix C	Amplitude spectra of further Jacket Measuring Points	165
A M	ppen leasu	dix D ring F	Basic Statistics (standard deviation, min, mean, max) of further Jac Points during Normal Operation	:ket 168
A	ppen	dix E	Load Cycle Distribution at Wind Speed of 12 and 16m/s	172
Bi	ibliog	raphy	у	177
С	Curriculum Vitae			

Table of Figures

Figure 1-1: Share of energy from renewable sources in the EU member States in 2014
(Eurostat, Feb 2016)1
Figure 2-1: Design process flow chart for wind turbines9
Figure 2-2: Component definition of bottom fixed offshore wind turbines according to
IEC Guideline (IEC-61400-3, July 2007)11
Figure 2-3: Common support structure concepts (Vries, et al., 2011)
Figure 2-4: Campbell diagram of a generic wind turbine showing the 1^{st} support
structure and flapwise blade natural frequencies (exemplarily)15
Figure 2-5: Exemplary scatter chart of the turbulence intensity over the mean wind
speed at 90 m height from FINO 1 measurement platform
Figure 2-6: Extreme wave approaching the FINO 1 platform in the North Sea on
October 4 th 2009 (Fischer, et al., 2010)17
Figure 2.7. Medalling methodology in structural dynamics and the correlation to
Figure 2-7: Modelling methodology in structural dynamics and the correlation to
experiments
Figure 2-7: Modeling methodology in structural dynamics and the correlation to experiments
Figure 2-9: Modeling methodology in structural dynamics and the correlation to experiments
 Figure 2-7: Modeling methodology in structural dynamics and the correlation to experiments
 Figure 2-7: Modeling methodology in structural dynamics and the correlation to experiments
 Figure 2-7: Modeling methodology in structural dynamics and the correlation to experiments
 Figure 2-7: Modeling methodology in structural dynamics and the correlation to experiments
 Figure 2-7: Modeling methodology in structural dynamics and the correlation to experiments
 Figure 2-7: Modeling methodology in structural dynamics and the correlation to experiments
 Figure 2-7: Modeling methodology in structural dynamics and the correlation to experiments
 Figure 2-7: Modeling methodology in structural dynamics and the correlation to experiments
 Figure 2-7: Modeling methodology in structural dynamics and the correlation to experiments

Figure 3-8: Correlation of the blade flapwise motion (DOF 16) calculated with Flex5
uncoupled and Flex5-Poseidon (time series, regression and cross correlation). 48
Figure 3-9: Correlation of the tower torsion (DOF 11) calculated with Flex5 uncoupled
and Flex5-Poseidon (time series, regression and cross correlation)
Figure 3-10: Time series of the flapwise motion of the blade tip using Flex5, Flex5-
Poseidon and Flex5-ANSYS at a constant wind speed of 8 m/s
Figure 3-11: Full-system natural frequencies from load case 1.2 (Jonkman, et al.,
2010)
Figure 3-12: Time series of the axial load at node 19, load case 5.1 of OC353
Figure 3-13: Relationship of hydrostatic forces ($F_{\rm po},F_{\rm pu}$), mass forces ($F_{\rm g}$), inner forces
(F_{cut}) and bearing reaction forces (R) on a submerged hollow pipe (vertical
forces only)54
Figure 4-1: Helicopter view on Alpha Ventus from southeast to northwest direction.
(Image from www.alpha-ventus.de, June 20 th 2013)
Figure 4-2: Wind farm location and layout59
Figure 4-3: Sequence of measurement data handling for aggregated user
Figure 4-4: Example of statistical data showing a one day period of four strain gauge
measurements been partly broken. Location is R4_D_S1 on March 1 st 2011 63
Figure 4-5: Wind and wave rose distribution of 2011
Figure 4-6: Orientation of the wind turbine AV4 at Alpha Ventus
Figure 4-7: Measurement locations at the northwest side of the jacket
Figure 5-1: Procedures for model verification and model validation
Figure 5-2: Main dimensions of WT AV4 simulation model
Figure 5-3: Lattice beam model of the TP and the upper jacket compound71
Figure 5-4: Examples of modelling element intersections at tubular joints
Figure 5-5: Reference coordinate systems of Flex5 and Poseidon (top view)74
Figure 5-6: Wind, wave and yaw angles in the simulation model using the example of
270 degrees measured inflow and 10 degrees yaw misalignment
Figure 5-7: Natural frequencies of the baseline model and (identified) measured
results

Figure 5-8: Normalized comparison of generator speed (top), pitch behaviour (left)
and electrical power output (right) under normal operation and free stream
wind direction77
Figure 5-9: Angles definition of the wind turbine rotor80
Figure 5-10: Normalized comparison of the blade loads at ψ = 6.7 degrees80
Figure 5-11: Tower top bending moment in [kNm] from measurement and simulation
during nacelle rotation82
Figure 5-12: Tower base bending moment in [kNm] from measurement and
simulation during nacelle rotation83
Figure 5-13: Correlation of nacelle azimuth and wind direction at hub height from
FINO1
Figure 5-14: Tower fore-aft and side-side bending moments over nacelle azimuth
angle85
Figure 5-15: Time series of stresses $[N/m^2]$ at four measurement levels on the west
leg during nacelle rotation (simulation = red dashed line, measurement = blue
line)88
Figure 5-16: Time series of stresses $[N/m^2]$ at a brace close to mudline during nacelle
rotation of measurement (blue plot) and simulation (dotted red plot)
Figure 5-17: Normalized edgewise bending moment of blade 1 on March 23 rd 2011 92
Figure 5-18: Normalized flapwise bending moment of blade 1 on 23rd March 2011.92
Figure 5-19: Comparison of the flapwise bending moments from simulation (dash
lines) and measurements (continuous lines). Normalized to measured mean of
blade 193
Figure 5-20: Normalized amplitude spectrum of the resulting tower base (left) and
tower top (right) bending moments from March 23 rd 2011 at 3 pm
Figure 5-21: Normalized amplitude spectrum of strain gauge R4_DT-W1_1 from
March 23 rd 2011 at 3 pm95
Figure 5-22: Normalized amplitude spectrum of strain gauge R4_D-W1_N2_3 from
March 23 rd 2011 at 3 pm96

Figure 5-23: Normalized amplitude spectrum of strain gauge R4_D-N1W2_W2_1
from March 23 rd 2011 at 3 pm97
Figure 5-24: Normalized statistics of the edgewise moment of blade 1 at normal
operation
Figure 5-25: Normalized statistics of the flapwise moment of blade 1 at normal
operation
Figure 5-26: Normalized statistics of the resulting tower base bending moment at
normal operation101
Figure 5-27: Normalized statistics of the tower base torsional moment at normal
operation
Figure 5-28: Normalized statistics of the jacket leg stresses from R4_DT-W1_1 at
normal operation
Figure 5-29: Normalized statistics of the jacket brace stresses from R4_D-W2/S1_1 at
normal operation104
Figure 5-30: Normalized statistics of the flapwise moment of blade 1 during idling 107
Figure 5-31: Normalized statistics of the resulting tower base bending moment during
idling 108
Figure 5-32: Normalized statistics of the jacket leg stresses from R4_DT-W1_1 during
idling 109
Figure 5-33: Normalized DEL over mean hub wind speed of the edgewise (left) and
flapwise (right) bending moment at the root of blade 1113
Figure 5-34: Load cycle distribution of measured (left) and simulated (right) edgewise
bending moment at 8 m/s turbulent wind114
Figure 5-35: Load cycle distribution of measured (left) and simulated (right) flapwise
bending moment at 8 m/s turbulent wind114
Figure 5-36: Normalized DEL over mean hub wind speed of the resulting tower
bottom bending moment (left) and the torsion moment (right)
Figure 5-37: Load cycle distribution of measured (left) and simulated (right) resulting
tower bottom bending moment at 8 m/s turbulent wind 116
Figure 5-38: Selection of jacket measurements for DEL and stress cycle analyses 117

Figure 5-39: Normalized DEL over mean hub wind speed of the stress at the jacket leg
at measurement location R4_DT-W1_1118
Figure 5-40: Load cycle distribution of measured (left) and simulated (right) jacket
stress at R4_DT_W1_1 at 8 m/s turbulent wind118
Figure 5-41: Normalized DEL over mean hub wind speed of the stresses at the brace
measurement locations R4_DT-W1/N2_3 and R4_DT-W1/N2_1119
Figure 5-42: Load cycle distribution of measured (left) and simulated (right) jacket
stresses at R4_DT_W1/N2_3 at 8 m/s turbulent wind
Figure 5-43: Normalized DEL over mean hub wind speed of the stresses at the X-brace
measurement location R4_D-N1W2/W1_3121
Figure 5-44: Load cycle distribution of measured (left) and simulated (right) jacket
stresses at R4_D_N1W2/W1_3 at 8 m/s turbulent wind
Figure 5-45: Normalized DEL of resulting tower bending moment $M_{xy}\xspace$ in free inflow
(low turbulence) and wake conditions (high turbulence)
Figure 5-46: Uncertainties for the validation of OWT with jackets
Figure 6-1: Overview of the different applied simulation approaches 129
Figure 6-2: Resulting tower top deflection of the semi-integrated and fully-coupled
OWT model using turbulent wind (8 m/s) and severe sea state (Hs = 6 m) 134
Figure 6-3: NFA results of methods II-IV compared to the fully-coupled method (I) 137
Figure 6-4: $DELs(v_{mean})$ of the blade flapwise bending moment (left) and the tower
bending moment (right): fully-coupled method compared to semi-integrated
method
Figure 6-5: $DELs(v_{mean})$ of the stress at the jacket leg (left) and the stress at a brace
(right): fully-coupled method compared to semi-integrated method
Figure 6-6: FFT of the tower bottom bending moment and a local brace stress of the
integrated and semi-integrated simulation methods (logarithmic scale)
Figure 6-7: DEL of fully-coupled method compared to semi-integrated method for 26
sensors (channel 1-6 WT, 7-8 tower, 9-13 & 21-22 jacket legs, other braces) . 140

Figure 6-8: $DELs(v_{mean})$ of the blade flapwise bending moment (left) and the tower bending moment (right): fully-coupled method compared to decoupled method Figure 6-9: DELs(v_{mean}) of the stress at the jacket leg (left) and the stress at a brace Figure 6-10: DEL of fully-coupled method compared to decoupled method for 26 sensors (channel 1-6 WT. 7-8 tower, 9-13 & 21-22 jacket legs, other braces), 142 Figure 6-11: DELs(v_{mean}) of the blade flapwise bending moment (left) and the tower bending moment (right): fully-coupled method compared to rigid-RNA method Figure 6-12: DELs(v_{mean}) of the stress at the jacket leg (left) and the stress at a brace Figure 6-13: DEL of fully-coupled method compared to rigid-RNA method for 26 sensors (channel 1-6 WT, 7-8 tower, 9-13 & 21-22 jacket legs, other braces) . 145 Figure 6-14: FFT of the tower bottom bending moment (black) and a local brace stress (blue) of the integrated and rigid-RNA simulation methods (logarithmic scale) Figure 7-4: Amplitude spectra of the DMS at the lowest x-bracing at the north-west Figure 7-5: Amplitude spectra of the DMS at the lowest x-bracing at the south-west Figure 7-6: Normalized statistics of jacket leg stresses from R4 D-E1 4 168 Figure 7-7: Normalized statistics of jacket leg stresses from R4 D-E5/E4 4...... 169 Figure 7-9: Normalized statistics of jacket leg stresses from R4_D-N5/N4_3 169 Figure 7-10: Normalized statistics of jacket leg stresses from R4 D-S1 2 170 Figure 7-11: Normalized statistics of jacket leg stresses from R4 D-S5/S4 3...... 170

Figure 7-12: Normalized statistics of brace stresses from R4_D-N1/W2_1170
Figure 7-13: Normalized statistics of brace stresses from R4_D-N2/W1_4171
Figure 7-14: Normalized statistics of brace stresses from R4_D-W1/S2_4171
Figure 7-15: Normalized statistics of brace stresses from R4_D-W2/S1_1171
Figure 7-16: Load cycle distribution of measured (left) and simulated (right) flapwise
bending moment at 12 m/s turbulent wind172
Figure 7-17: Load cycle distribution of measured (left) and simulated (right) flapwise
bending moment at 16 m/s turbulent wind172
Figure 7-18: Load cycle distribution of measured (left) and simulated (right) resulting
tower bottom bending moment at 12 m/s turbulent wind 173
Figure 7-19: Load cycle distribution of measured (left) and simulated (right) resulting
tower bottom bending moment at 16 m/s turbulent wind 173
Figure 7-20: Load cycle distribution of measured (left) and simulated (right) jacket
stress at R4_DT_W1_1 at 12 m/s turbulent wind 173
Figure 7-21: Load cycle distribution of measured (left) and simulated (right) jacket
stress at R4_DT_W1_1 at 16 m/s turbulent wind 174
Figure 7-22: Load cycle distribution of measured (left) and simulated (right) jacket
stresses at R4_DT_W1/N2_3 at 12 m/s turbulent wind
Figure 7-23: Load cycle distribution of measured (left) and simulated (right) jacket
stresses at R4_DT_W1/N2_3 at 16 m/s turbulent wind
Figure 7-24: Load cycle distribution of measured (left) and simulated (right) jacket
stresses at R4_D_N1W2/W1_3 at 12 m/s turbulent wind 175
Figure 7-25: Load cycle distribution of measured (left) and simulated (right) jacket
stresses at R4_D_N1W2/W1_3 at 16 m/s turbulent wind 175

List of Tables

Table 2-1: Overview of load sources according to their chronological sequence 14
Table 3-1: Sharing of computing times of Flex5 and Poseidon for one time step, CPU
Intel T9500 with 2.59GHz43
Table 3-2: Main data of the NREL 5 MW wind turbine
Table 3-3: Influence of buoyancy for load case 2.1 (OC4). Results show the summed
vertical forces (4 piles) as bearing reaction ($F_{z})$ and as nodal forces $\left(F_{x}\right)$ at
mudline
Table 5-1: Nacelle rotation campaigns of WT AV4 in 2011
Table 5-2: Amplitudes of tower bending moments caused by nacelle rotation from
measurement, simulation and estimated results in [kNm]
Table 5-3: Estimated order of magnitudes of normal stress ranges at the four
measurement levels at the jacket west leg87
Table 5-4: Averaged boundary conditions on March 23 rd 2011 between 3:00 pm and
3:10 pm
Table 5-5: Simulation input for normal operation based on filtered measurements in
2011, allowable wind sector 210-250 degrees98
Table 5-6: Simulation input for idling operation based on filtered measurements in
2011, allowable wind sector 190-270 degrees105
Table 5-7: Parameters for calculating damage equivalent loads (DEL)
Table 5-8: Simulation input for the validation of load cycles and DELs derived from
measurements in 2011, allowable wind sector 236-244 degrees111
Table 6-1: Substitute monopile properties
Table 6-2: Largest calculated differences of DEL per main component compared to
the fully-coupled method (I) during normal operation load cases

List of Abbreviations

1p	1p periodic excitation frequency of the rotor
3р	3p periodic excitation frequency of the rotor
AV1AV12	Short name of the offshore wind turbines in Alpha Ventus
AV4	Research wind turbine Senvion 5M with jacket
BEM	Blade element momentum theory
COG	Center of gravity
DEL	Damage equivalent load(s)
DLL	Dynamic link library
DMS	Resistance strain gauge
DOF	Degree(s) of freedom
FE	Finite element(s)
FEED	Front-end engineering design
FEM	Finite element method(s)
FFT	Fast Fourier transformation
FINO 1	Research platform in the North Sea "Forschung in Nord und Ostsee $1^{\prime\prime}$
FLS	Fatigue limit state analysis
GLGH	Germanischer Lloyd Garrad Hassan
HRD	High resolution data
IEC	International Electrical Commission
LJF	Local joint flexibility
Max	Maximum
MBS	Multi-body-system
Min	Minimum
MSL	Mean sea level
NFA	Natural frequency analysis
OC3	Offshore code comparison collaboration project under IEA Annex 23
OC4	Offshore code comparison collaboration continuation project
OWT	Offshore wind turbine

RNA	Rotor-nacelle-assembly
SCADA	Supervisory control and data acquisition
STD	Standard deviation
SWE	Stuttgart Wind Energy (SWE), University Stuttgart
ТР	Transition piece
ULS	Ultimate limit state analysis
WT	Wind turbine

List of Symbols

Bold written symbols represent for matrices or vectors if not specified differently. A dot over a symbol is the abbreviation for the first derivative in time. Two dots mark the second derivative in time of a quantity.

Indices

aero	Aerodynamic
hydro	Hydrodynamic
i, j, l, n	Index number
m	Master
mean	Average
ref	Reference
res	Resulting
S	Slave
subst	Substitute

Greek Symbols

Wind shear exponent	[-]
Angle measured against horizontal plane	[deg]
Eigenvalue	
Eigenvector	
Rotor azimuth angle (0 deg = blade pointing vertically down)	[deg]
Density	[kg/m³]
Structural stress	[N/m²]
Coefficient of drag	[-]
Coefficient of mass	[-]
Damping	[kg/s]
Diameter	[m]
Damping matrix	
Frequency	[Hz]
Force	[N]
General force vector	
	Wind shear exponent Angle measured against horizontal plane Eigenvalue Eigenvector Rotor azimuth angle (0 deg = blade pointing vertically down) Density Structural stress Coefficient of drag Coefficient of mass Damping Diameter Damping matrix Frequency Force General force vector

g	Acceleration of gravity	[m/s²]
Hs	significant wave height	[m]
I	Identity matrix	[-]
m	Mass	[kg]
m	Woehler coefficient	[-]
М	Mass matrix	
М	Bending moment	[Nm]
n	Number of stress cycles	[-]
N_{ref}	Number of reference cycles	[-]
р	Pressure	[N/m²]
Pelect	Electrical power	[W]
q	Modal DOF	
q	Modal vector of DOF	
r	Distance, radius from jacket center	[m]
r _{cog}	Effective lever of the center of gravity	[m]
S	Stiffness	[kg/s²]
S	Stiffness matrix	
S	Reference surface	[m²]
u	Horizontal flow velocity	[m/s]
U	Modal matrix containing eigenvectors $oldsymbol{arphi}$	
U*	Reduced model matrix	
t	Time	[s]
T ₀	Zero-up crossing period of waves	[s]
T _p	Peak period of waves	[s]
Т	Transformation matrix	
v	Reduced vector of DOF	
Vw	Wind speed	[m/s]
Vdir	Wind direction	[deg]
Vmean	Average wind speed usually at hub height	[m/s]
х	Quantity of a DOF	
X, Xm, Xs	Vector of DOF, indicating also master and slave sub vectors	

Abstract

Today the design of offshore wind turbines is an iterative process between different designers of special roles in order to ensure a cost-efficient solution. Responsibilities in offshore business are clearly split between the wind turbine designer and the support structure designer. A major collaborative task for both parties is the determination of the governing design loads due to the site-specific and stochastic met-ocean conditions over the lifetime including transport, installation, operation and decommissioning phases. The design calculations for the operation require an integrative model approach, which is able to consider all relevant subsystems and the governing loads. In general, these subsystems are the rotor, controller, nacelle, tower, substructure, foundation and soil. Common practise in industry application is that specialized structural models are applied for the wind turbine (i.e. rotor, tower, nacelle and controller) and the support structure (substructure, foundation and soil). Each of the specialized models considers an approximated and temporal constant model of the other subsystem during the design load iterations. For many applications this is a valid approach, but it can have disadvantages when dynamic interactions between the wind turbine and the support structure become excited or the natural frequency of the full system changes during subsystem optimization.

In this thesis an integrated model has been further developed and applied, which facilitates the combination of the wind turbine and the support structure in one direct solution by coupling the equations of motion during runtime. This ensures full dynamic interaction of the models without further simplification of the original models. Two applications have been realised: Flex5 coupled to Poseidon and Flex5 coupled to ANSYS. The coupled models are verified against other state-of-the art load simulation tools to proof the correct implementation.

In a next step the simulation method is validated against measurements from a commercial offshore wind turbine. The measurement campaign is carried out in the

wind farm Alpha Ventus, the first commercial wind farm in the German North Sea. The considered wind turbine is a Senvion 5M installed on a jacket in 28m water depth. The validation considers mainly the strain gauge measurements from the rotor blades, the tower and the jacket substructure at different operational states of the wind turbine. High resolution data and the derived statistical parameters are taken into account for the validation. The results consider natural frequencies, quasi-static loadings, time series, statistic parameters, damage equivalent loads and rainflow count distribution. Correlated wind and wave conditions from a nearby met-mast are used directly in the simulation model. In conclusion very good consistence between load measurements and the results from the integrated simulation approach is shown. Some differences remain because the turbulence of the wind field and the elevation of the random sea state do not correspond with the model in detail. The spatial and temporal resolution of the wind and wave data was not measured. This highlights the necessity of very accurate and correlated measurements of wind and waves for the design of offshore wind turbines and the relevance of models that can process more complex data.

The final part of the thesis addresses the distinctions between different simulation approaches compared to the newly developed fully-integrated approach for offshore wind turbines with jackets. The three alternative models differ mainly in the accuracy of the jacket subsystem or the limited dynamic interaction between wind turbine and support structure. For most components like the blades, the tower or the jacket legs good correspondences between the simplified models and the fully-integrated model are achieved. Larger differences occur in the local stresses of the jacket brace elements. This has a significant impact on the hot-spot stresses of tubular joints, which can be decisive for the entire jacket design. It is therefore recommended to use a fully-integrated model that is able to capture the dynamic interaction between wind turbine and local support structure components.

Zusammenfassung

Der Entwurf von Offshore-Windkraftanlagen ist ein iterativer Prozess mit dem Ziel, ein kostengünstiges Gesamtkonzept zu entwickeln. Dabei gibt es klar aufgeteilte Verantwortlichkeiten zwischen Anlagenhersteller und Entwickler von Tragstrukturen. Ein wichtiges gemeinsames Ziel ist die Bestimmung der Entwurfslasten aufgrund standortspezifischer Randbedingungen von Wind und Welleneinflüssen über die gesamte Lebensdauer hinweg. Es werden sowohl Transport, Installation, Betrieb und Rückbau betrachtet. Die Berechnungen für den Betrieb erfordern einen integrierten Gesamtansatz, welcher alle relevanten Teilsvsteme inklusive der äußeren Lasten abbildet. Gängige industrielle Praxis ist die Verwendung verschiedener spezialisierter Strukturmodelle für die Windkraftanlage einerseits (Rotor, Gondel, Turm und Regler) und für die Tragstruktur andererseits (Unterstruktur, Fundament und Boden). Diese Modelle benutzen stets vereinfachte Teilmodelle des jeweils anderen Modells und nehmen diese innerhalb der Lastiteration als konstant an. Dieser Ansatz ist für viele Anwendungen geeignet. Die Nachteile zeigen sich sobald die dynamische Interaktion zwischen Windkraftanlage und Tragstruktur relevant wird oder sobald sich die Eigenfrequenzen des Gesamtsystems bei Optimierung der Teilmodelle verändern. Dadurch steigen die Anzahl der Lastiterationen und der notwendige Datenaustausch.

Im Rahmen dieser Arbeit wird ein Verfahren weiterentwickelt und angewendet, welches diese dynamischen Interaktionen in einer Gesamtsimulation ermöglicht. Die Bewegungsgleichungen (Modelle) der Teilsysteme werden während der Lösung im Zeitbereich kombiniert. Dadurch ist die Kopplung aller Freiheitsgrade der Modelle gewährleistet, ohne dass zusätzliche Vereinfachungen der ursprünglichen Teilmodelle von Windkraftanlage und Tragstruktur nötig werden. Zwei konkrete Anwendungen werden umgesetzt: Flex5 gekoppelt mit Poseidon und Flex5 gekoppelt mit ANSYS. Beide Lösungen sind mit anderen gängigen Simulationsprogrammen verifiziert, um die korrekte Implementierung der Kopplungen zu prüfen. Im Weiteren wird das gekoppelte Verfahren zur Lastberechnung mit Messdaten validiert. Die Messdaten entstammen Alpha Ventus, dem ersten deutschen Offshore-Windpark in der Nordsee. Eine Windkraftanlage vom Typ Senvion 5M ist auf einer Jacket Tragstruktur in rund 28m Wassertiefe installiert und messtechnisch ausgestattet. Die Validierung basiert hauptsächlich auf Dehnungsmessungen an den Komponenten Rotorblatt, Turm und Jacket, wobei verschiedene Betriebszustände berücksichtigt werden. Hochaufgelöste Signale sowie deren statistische Größen werden genutzt, um Eigenfrequenzen, quasi-statische Lasten, Lastzeitreihen, statistische Parameter, schädigungsäquivalente Lasten und Schwingweiten-Klassifizierung zwischen Simulation und Messung zu vergleichen. Korrelierende Windund Welleninformationen vom nahegelegenen Messmast werden direkt im Simulationsmodell verwendet. Die Ergebnisse von Simulation und Messung stimmen sehr gut überein. Unterschiede entstehen im Wesentlichen aufgrund der gemittelt bestimmten Umgebungsbedingungen. Der turbulente Wind sowie Seegang sind messtechnisch nicht räumlich erfasst und können ohnehin nur bedingt im Modell approximiert werden, so dass eine exakte Nachbildung unrealistisch bleibt. Dies verdeutlicht aber auch die Notwendigkeit, sowohl möglichst genaue standortspezifische und zeitgleiche Messungen von Wind und Wellen für den Entwurf von Offshore Windkraftanlagen durchzuführen, als auch die notwenigen Modelle für deren Umsetzung zu entwickeln.

Alternative Simulationsverfahren und deren Vergleich mit dem entwickelten integrierten Ansatz werden am Schluss untersucht. Drei Verfahren sind berücksichtigt, die sich jeweils in der Abbildung des Jacket Modells und ihrer dynamischen Interaktion mit der Windkraftanlage unterscheiden. Für viele Hauptkomponenten (d.h. Rotor und Turm, sowie Jacket-Beine) liefern die bisherigen Ansätze plausible Ergebnisse, jedoch werden größere Unterschiede bei lokalen Stäben deutlich, was Einfluss auf die Bemessung der Knoten hat, die oft Design entscheidend sind. Daher werden Berechnungen mit Modellen empfohlen, die eine Kopplung zwischen Windkraftanlage und Jacket möglichst exakt abbilden.