‘R\Nﬂ'l

Kai Adam, Arvid Butting, Robert Heim,
Oliver Kautz, Jérdme Pfeiffer,
Bernhard Rumpe, Andreas Wortmann

Modeling Robotics Tasks for Better
Separation of Concerns, Platform-
Independence, and Reuse

Results of the iserveU Federal
Research Project

o ofnc l _ “‘1 I

{ .

l o .' ‘g ﬁ;ﬂmﬁ
‘ ------ _-:'l'_h i I

LA | L
“ i f’: ‘
B | wnl/PX| A

f,‘ E & IE

Aachener Informatik-Berichte,
Software Engineering Band 28

Hrsg: Prof. Dr. rer. nat. Bernhard Rumpe

Aachener Informatik-Berichte, Software Engineering

herausgegebenvon
Prof. Dr. rer. nat. Bernhard Rumpe
Software Engineering
RWTH Aachen University

Band 28

Kai Adam, Arvid Butting, Robert Heim, Oliver Kautz,
Jérome Pfeiffer, Bernhard Rumpe, Andreas Wortmann
RWTH Aachen University

Modeling Robotics Tasks for Better Separation of
Concerns, Platform-Independence, and Reuse

Results of the iserveU Federal Research Project

Shaker Verlag
Aachen 2017

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche
Nationalbibliografie; detailed bibliographic data are available in the Internet at
http://dnb.d-nb.de.

Copyright Shaker Verlag 2017

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording or otherwise, without the prior permission
ofthe publishers.

Printedin Germany.

ISBN 978-3-8440-5319-7

ISSN 1869-9170

Shaker Verlag GmbH « P.O.BOX 101818 D-52018 Aachen

Phone: 0049/2407/9596-0 « Telefax: 0049/2407/9596-9
Internet: www.shaker.de ¢ e-mail: info@shaker.de

This research has partly received funding from the German Federal Ministry for Educa-
tion and Research under grant no. 01IM12008C. The responsibility for the content of this
publication is with the authors.

Abstract

Deploying robotics applications requires expertise from multiple domains, including gen-
eral software engineering and the application domain itself. Consequently, successful
robotics applications are developed by teams of software experts, robotics experts, and
application domain experts. The conceptual gap between application domain challenges
and implementation domain solutions gives rise to accidental complexities from solving
problem domain challenges with programming domain details. This complicates develop-
ment and may lead to failure. Domain and robotics experts are rarely software engineering
experts. Their involvement into the software engineering of reusable robotics applications
requires that they become software experts or that implementation details can be abstracted.

Model-driven engineering reduces the conceptual gap by leveraging models to primary
development artifacts. Models usually are more abstract than programming language
artifacts and enable to use robotics vocabulary or application domain vocabulary. This
supports domain experts in formulating solutions in established known vocabulary. Model
transformations can embody the software engineering expertise required to translate such
models into robust and reusable programming language solutions. Different target tech-
nologies can be addressed by different transformations, which decouples logical robotics
tasks from heterogeneous platforms and ultimately produces deployable solutions. Proper
separation of expert concerns is crucial to enable transformations and ultimately improve
engineering of robotics applications. Component-based software engineering has proven
useful for the integration of domain-specific solutions and system extensibility. Here,
software components encapsulate functionality in reusable black boxes. That these com-
ponents usually are programming language artifacts gives rise to accidental complexities
again. Models of architecture description languages lift components to the model level.
Component models can serve as building blocks of complex systems and can be translated
into implementations for different target technologies as well. Combining model-driven en-
gineering with component-based software engineering enables to provide robotics experts
and domain experts with appropriate modeling languages, as well as software engineering
experts with means to decouple their concerns while ensuring integration of their solutions.

We present a collection of domain-specific languages to describe service robotics appli-
cations. They enable formulating domains, tasks, actions, and properties of a robot and
its environment free of GPL complexities. Their models are translated into component
implementations of a MontiArcAutomaton [RRRW15] software architecture model and
interpreted at system runtime. The architecture executes tasks via their transformation to
Planning Domain Definition Language models, solves these, and executes the resulting
plans with a robotics middleware. Leveraging separation of concerns and abstraction of
modeling languages, this reduces the effort of describing robot tasks, facilitates extension

of the system with new components, and decouples logical task solving from the robot plat-
form. This supports integration of domain experts and reuse of infrastructure constituents
in different contexts and with different platforms.

il

Contents

1 Introduction

2 Methodology

3 Example

4.1

4.2
43

4.4

4.5

4.6

5.1
5.2

53

4 Modeling Languages
Application Language Lo
4.1.1 LanguageElements
4.1.2 Well-formednessRules
Domain Modeling
Entity Language
43.1 LanguageElements
432 Well-formednessRules
Task Language
44.1 LanguageElements
442 Well-formednessRules
Goal Language
45.1 LanguageElements
4.5.2 Well-formednessRules
Discussion
5 System Architecture
Component & Connector Architecture
Reference Architecture oL
5.2.1 Remote Operator
5.22 TaskProcessor
523 DataTypes e
5.2.4 Controller Component
5.2.5 Planner Component
5.2.6 InitialStateProvider Component
5.2.7 PlanVerifier Component
5.2.8 ActionExecuter Component
5.2.9 PropertyCalculator Component
Runtime Environment L
5.3.1 Model Realization Base Classes
5.3.2 Robotand World Interfaces

11
11
11
12
12
12
13
14
15
15
16
16
17
18
18

21
22
23
24
24
27
28
32
32
33
33
34
34
34
35

iii

v

5.3.3 System-Wide Logging
5.4 Generators foriserveU Models
5.5 Application-Specific Architecture Parts
5.5.1 SmartSoftUsageDeployer Component
5.5.2 ResponseListener Component
5.5.3 Robot and World Implementation
5.54 SmartSoft Communicator
5.5.5 Communication Protocol
5.5.6 KnowledgeBase
5.5.7 Architecture Starter oL
5.6 Exemplary Execution Excerpts
5.6.1 Setting
5.6.2 Successful Deliver
5.6.3 Path Temporarily Blocked
5.6.4 Path Permanently Blocked, Remote Operator Successful
5.6.5 Path Permanently Blocked, Remote Operator Not Successful . . .
5.6.6 AbortviaDesktopUI.
5.6.7 AbortviaTabletUI
57 Discussion

Translating Domain Expert Models to Robot Plans

6.1 Intra-Language Model-to-Model Transformations

6.2 TransformationstoPDDL
6.2.1 Transformation of CD Models to PDDL Types and Predicates . .
6.2.2 Transformation of Entity Properties to PDDL Predicates
6.2.3 Transformation of Entity Actions to PDDL Actions
6.2.4 Transformation of Goals to PDDL Problems

6.3 Discussion.

Human-Robot Interaction

7.1 Desktop User Interface

7.2 Tablet User Interface
7.2.1 Activities in Different Scenarios
7.2.2 Tablet Communication

Deployment

8.1 Deployment Scenario
8.1.1 LogisticsDomain
8.1.2 Rooms World Entity
8.1.3 Transport RobotEntity
8.1.4 TransportTasks
8.1.5 TransportGoals
8.1.6 Integrating Handcrafted Code

53
54
56
56
56
58
60
62

65
65
69
69
74

8.3 Deployment of Architecture and User Interfaces 85
8.3.1 Starting theiserveU Server 86

8.3.2 Deploying Reference Architecture and Desktop UI 86

8.3.3 Starting the Tablet User Interface 87

8.4 Generalizing the Infrastructure 87
84.1 AdaptingModels oo Lo 88

8.4.2 Transfer to Other Platforms 90

9 Related Work 93
9.1 Modeling Languages 93
9.2 Integrating Modeling Languages with Planning 94

9.3 Robotics Reference Architectures 94

10 Conclusion 95
Bibliography 97
List of Figures 103
List of Listings 106
Index of Abbreviations 109

