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Abstract

Deploying robotics applications requires expertise from multiple domains, including gen-
eral software engineering and the application domain itself. Consequently, successful
robotics applications are developed by teams of software experts, robotics experts, and
application domain experts. The conceptual gap between application domain challenges
and implementation domain solutions gives rise to accidental complexities from solving
problem domain challenges with programming domain details. This complicates develop-
ment and may lead to failure. Domain and robotics experts are rarely software engineering
experts. Their involvement into the software engineering of reusable robotics applications
requires that they become software experts or that implementation details can be abstracted.

Model-driven engineering reduces the conceptual gap by leveraging models to primary
development artifacts. Models usually are more abstract than programming language
artifacts and enable to use robotics vocabulary or application domain vocabulary. This
supports domain experts in formulating solutions in established known vocabulary. Model
transformations can embody the software engineering expertise required to translate such
models into robust and reusable programming language solutions. Different target tech-
nologies can be addressed by different transformations, which decouples logical robotics
tasks from heterogeneous platforms and ultimately produces deployable solutions. Proper
separation of expert concerns is crucial to enable transformations and ultimately improve
engineering of robotics applications. Component-based software engineering has proven
useful for the integration of domain-specific solutions and system extensibility. Here,
software components encapsulate functionality in reusable black boxes. That these com-
ponents usually are programming language artifacts gives rise to accidental complexities
again. Models of architecture description languages lift components to the model level.
Component models can serve as building blocks of complex systems and can be translated
into implementations for different target technologies as well. Combining model-driven en-
gineering with component-based software engineering enables to provide robotics experts
and domain experts with appropriate modeling languages, as well as software engineering
experts with means to decouple their concerns while ensuring integration of their solutions.

We present a collection of domain-specific languages to describe service robotics appli-
cations. They enable formulating domains, tasks, actions, and properties of a robot and
its environment free of GPL complexities. Their models are translated into component
implementations of a MontiArcAutomaton [RRRW15] software architecture model and
interpreted at system runtime. The architecture executes tasks via their transformation to
Planning Domain Definition Language models, solves these, and executes the resulting
plans with a robotics middleware. Leveraging separation of concerns and abstraction of
modeling languages, this reduces the effort of describing robot tasks, facilitates extension



of the system with new components, and decouples logical task solving from the robot plat-
form. This supports integration of domain experts and reuse of infrastructure constituents
in different contexts and with different platforms.
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