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Abstract

Today, one challenge in vehicle development is dealing with increased complexity, i.a.

as a consequence of a large number of interacting components and subsystems, many re-

quirements, often in conflict to each other, and a large variety of vehicles that must be

considered. In general, complexity leads to time-consuming and hence cost-intensive de-

velopment processes. In contrast, an increasing number of competitors require efficient

product development in terms of time and cost.

Design methodologies such as concurrent engineering and set-based design exist to

handle complex design problems more efficiently. One aspect of concurrent engineering is

that components and subsystems are developed simultaneously rather than subsequently.

This potentially reduces the overall development time, however, due to interactions among

the components and subsystems, concurrent engineering increases uncertainties due to lack

of knowledge. The idea of set-based design is to consider a set of permissible designs, which

is narrowed throughout the development when more information, e.g. precise customer

needs, cost, manufacturability, etc. is available. Although, this requires more effort in

early development stages, it minimizes necessary iteration loops due to lack of knowledge

and becomes more efficient overall compared to design strategies where one single design is

considered only. Set-based design in conjunction with concurrent engineering is a powerful

combination of two design strategies, compensating the shortcomings of the individual

methodologies and enabling efficient development processes.

Recently, many set-based design approaches, particularly relying on numerical simu-

lation, were proposed to increase the efficiency of development processes. One approach

is based on the computation of box-shaped Solution Spaces, representing permissible de-

sign alternatives that satisfy all specified requirements. Box-shaped Solution Spaces are

compatible to concurrent engineering, since requirements on the system are formulated

as independent requirements on components and subsystems, which can be developed in

detail independently and simultaneously as a result.

This thesis proposes improved approaches to compute Solution Spaces, such that un-

certainties due to lack of knowledge are taken into account at its best, such that the result

is compatible to concurrent engineering and such that the approaches are applicable to

development problems particularly in chassis design.

Firstly, a gradient-based approach is proposed for optimizing the number of design

alternatives via a search of box-shaped Solution Spaces with maximum volume. The un-

derlying optimization problem is analyzed, and the approach is validated via analytic test

problems. The results are compared to an existing technique using a stochastic Solution

Space algorithm.

Motivated by the fact that box-shaped Solution Spaces are possibly sub-optimal to
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represent the whole set of permissible designs, approaches based on a two-dimensional

decomposition of high-dimensional Solution Spaces are introduced. This enables an im-

proved handling of uncertainties in the early development phase. Two approaches are

presented and the underlying optimization problems are analyzed and discussed. Both

approaches are validated again by analytic test problems.

Furthermore, the approaches are compared in terms of their numerical complexity,

and the advantages and disadvantages of box-shaped Solution Spaces compared to a two-

dimensional decomposition of Solution Spaces are discussed.

Finally, the applicability of the approaches is demonstrated by industrial examples in

the field of chassis design. The examples comprise the development of single vehicles as

well as the development of a set of vehicles, where the components need to be designed

such that requirements on the driving dynamical behavior are satisfied.
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