Zur Klangoptimierung von Idiophonen mittels Schallsynthetisierung

Von der Fakultät Konstruktions-, Produktions- und Fahrzeugtechnik der Universität Stuttgart zur Erlangung der Würde eines Doktor-Ingenieurs (Dr.-Ing.) genehmigte Abhandlung

${f Von}$ Pascal Dieter Bestle aus Herrenberg

Hauptberichter: apl. Prof. Dr.-Ing. habil. Michael Hanss

Mitberichter: Prof. Dr.-Ing. Otto von Estorff

Tag der mündlichen Prüfung: 16. August 2017

Institut für Technische und Numerische Mechanik der Universität Stuttgart

Schriften aus dem Institut für Technische und Numerische Mechanik der Universität Stuttgart

Herausgeber: Prof. Dr.-Ing. Prof. E.h. Peter Eberhard

Band 52/2017

Pascal Bestle

Zur Klangoptimierung von Idiophonen mittels Schallsynthetisierung

D 93 (Diss. Universität Stuttgart)

Shaker Verlag Aachen 2017

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: Stuttgart, Univ., Diss., 2017

Copyright Shaker Verlag 2017 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8440-5524-5 ISSN 1861-1651

Shaker Verlag GmbH • Postfach 101818 • 52018 Aachen Telefon: 02407 / 95 96 - 0 • Telefax: 02407 / 95 96 - 9 Internet: www.shaker.de • E-Mail: info@shaker.de

Vorwort

Die vorliegende Dissertationsschrift entstand während meiner fünfjährigen Tätigkeit als wissenschaftlicher Mitarbeiter am Institut für Technische und Numerische Mechanik (ITM) der Universität Stuttgart.

Zuallererst danke ich meinem Doktorvater Prof. Michael Hanss für die Übernahme des Hauptberichtes und vor allem für die intensive Betreuung während der Entstehung dieser Arbeit. Er gewährte mir größtmögliche Freiheiten bei der inhaltlichen Ausrichtung der Arbeit und stand mir mit seiner stets offenen Tür immer mit Rat und Tat zur Seite. Die vielen fachlichen Diskussionen zu auftretenden Fragestellungen und den zur Beantwortung notwendigen Methodiken trugen maßgeblich zum Gelingen dieser Forschungsarbeit bei.

Mein ganz besonderer Dank gilt auch dem Leiter des Instituts Prof. Peter Eberhard, der bereits während meines Studiums in mir das Potential für eine erfolgreiche Promotion sah und mich nach meiner Diplomarbeit an das ITM holte. Bedanken möchte ich mich vor allem für sein fachliches und persönliches Interesse und Engagement an meiner Forschung. Außerdem ist es seinem Geschick zu verdanken, dass am Institut stets eine harmonische, freundschaftliche und auf fachlicher Basis nicht zuletzt höchst wissenschaftliche Atmosphäre herrscht. In diesem Zusammenhang möchte ich auch all meinen Kollegen danken, die zum einen durch fachliche Diskussionen, aber auch ausreichend persönlichen Austausch weit abseits der Wissenschaft maßgeblich zum Erfolg meiner Promotion beigetragen haben.

Ebenfalls gilt mein Dank allen Studierenden, die im Rahmen ihrer studentischen Arbeiten einen wertvollen Beitrag geleistet haben.

Der größte Dank gebührt jedoch meiner Familie, die mich immer bestmöglich unterstützte. Vielen Dank an meine Eltern, die mir zunächst das Maschinenbaustudium ermöglichten und mir dann während meiner Promotion immer mit Rat und Tat zur Seite standen. Am meisten möchte ich mich bei meiner Frau Julia bedanken, mit der ich seit dem ersten Tag meines Studiums einen gemeinsamen Weg beschreite. Insbesondere in der stressigsten Abschlussphase meiner Promotion hielt sie mir stets den Rücken frei und vertröstete unsere Tochter Charlotte, wenn Papa wieder später nach Hause kam.

Bedanken möchte ich mich schließlich noch bei Prof. Dr.-Ing. Otto von Estorff für die freundliche Übernahme des Mitberichtes und die wertvollen Anmerkungen zu dieser Arbeit.

Pascal Bestle

Steinenbronn, September 2017

Inhalt

	Kur	zfassun	g	ΙX
	Abs	tract .		ΧI
1	Ein	leitung	g	1
	1.1	Ausga	ngspunkt und Motivation	2
	1.2	Zielset	tzung und Aufbau der Arbeit	3
2		führun ındlage	g in die Psychoakustik und ausgewählte musiktheoretische	7
	2.1	0	theoretische Grundlagen	8
	2.1	2.1.1	Klang	8
		2.1.2	Obertonverhalten	9
		2.1.3	Töne und Intervalle	10
		2.1.4	Tonhöhenwahrnehmung und Residualeffekt	12
		2.1.5	Klassifikation von Musikinstrumenten	12
2.2 Das Vibraphon		Das V	ibraphon	14
		2.2.1	Aufbau	14
		2.2.2	Stimmen der Klangplatten	15
	2.3	Das m	nenschliche Hörorgan	16
		2.3.1	Hörfeld	18
		2.3.2	Tonotopie	19
	2.4	Psych	oakustische Kriterien	20
		2.4.1	Maskierung	20
		2.4.2	Schwebung	22

Inhalt

		2.4.3	Kritische Bandbreite	23
		2.4.4	Harmonizität und Inharmonizität	25
3	Mo	dellier	ung von Idiophonen als reduzierte elastische Körper	27
	3.1	Linear	re Finite-Elemente-Methode	28
		3.1.1	FE-Modell der Yamaha-Klangplatte	29
	3.2	Model	lordnungsreduktion auf Basis modaler Ansatzfunktionen $\ \ldots \ \ldots$	32
	3.3	Berüc	ksichtigung dissipativer Effekte durch Dämpfung	35
	3.4	Nume	rische Zeitintegration	37
4	Exp	erime	ntelle Analyse von Idiophonen	41
	4.1	Grund	llagen der experimentellen Modalanalyse	41
		4.1.1	Anregung	43
		4.1.2	Messaufnehmer	44
		4.1.3	Bestimmung der Übertragungsfunktion	46
	4.2	Messe	inrichtung für die experimentelle Analyse	49
		4.2.1	Lagerung der Klangplatten	50
		4.2.2	Der Anregungsmechanismus	51
		4.2.3	Klangmessung in einer schallarmen Umgebung	55
		4.2.4	Messablauf	56
	4.3	Messd	atenerfassung und Auswertung	58
		4.3.1	Messhardware	58
		4.3.2	Modalanalyse-Software ModAna	59
	4.4	Ergeb	nisse der experimentellen Analyse	59
		4.4.1	Einfluss der Einspannung auf die Schwingungseigenschaften der Klangplatten	60
		4.4.2	Messung des Klangs der Vibraphon-Platten dreier Hersteller $\ . \ . \ .$	63
5 Schallsynthese aus der Oberflächenbewegung schwingender elastise Strukturen				67
	5.1	Nume	rische Methoden zur Berechnung von Schallfeldern	67
5.2 Grundlagen der Akustik				69

Inhalt

		5.2.1	Physikalische Zustandsgrößen	6	9
		5.2.2	Das eindimensionale Schallfeld	7	C
		5.2.3	Das dreidimensionale Schallfeld	7	4
		5.2.4	Eigenschaften einer Punktschallquelle	7	C
	5.3	Schall	abstrahlung komplexer Geometrien	7	6
		5.3.1	Das finite Oberflächenelement als Punktschallquelle	7	8
		5.3.2	Berücksichtigung der Laufzeit von Schallwellen	8	1
		5.3.3	Numerische Berechnung des Schalldrucks	8	3
	5.4	Validie	erung der Schallsynthese	8	5
		5.4.1	Balkenmodelle	8	6
		5.4.2	Vergleich mit der Boundary-Elemente-Methode	9	2
		5.4.3	Vergleich mit der Messung	9	4
		5.4.4	Aussagekraft der Klangvorhersage	9	Ç
6	Opt	imieru	ing einer Vibraphon-Klangplatte	10	3
	6.1	Nume	rische Optimierung des Klangs der Yamaha-Klangplatte	10	3
		6.1.1	Materialparameterstudie der Yamaha-Klangplatte	10	4
		6.1.2	Formulierung des Optimierungsproblems	10	5
		6.1.3	Diskussion der Optimierungsergebnisse	10	8
	6.2	Optim	nierung und Fertigung eigener Klangplatten	11	3
7	Zus	amme	nfassung	12	1
Fo	rmel	lzeiche	n und Notation	12	5
Li	terat	ur		12	7