Technische Universitdt Miinchen
Fakultét fiir Elektrotechnik und Informationstechnik
Lehrstuhl fiir Datenverarbeitung

Learning Image and Video Representations Based on
Sparsity Priors

Xian Wei
Vollsténdiger Abdruck der von der Fakultét fiir Elektrotechnik und Informationstechnik
der Technischen Universitéit Miinchen zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs (Dr.-Ing.)

genehmigten Dissertation.

Vorsitzende/-r:  Prof. Dr. Jorg Conradt

Priifende/-r der Dissertation:
1. Prof. Dr.-Ing. Klaus Diepold
2. Priv.-Doz. Dr. Martin Kleinsteuber
Die Dissertation wurde am 17.11.2016 bei der Technische Universitéit Miinchen eingereicht

und durch die Fakultét fiir Elektrotechnik und Informationstechnik am 07.04.2017 angenom-
men.



Xian Wei. Learning Image and Video Representations Based on Sparsity Priors. Disserta-
tion, Technische Universitdt Miinchen, Munich, Germany, 2017.



Berichte aus der Informatik

Xian Wei

Learning Image and Video Representations
Based on Sparsity Priors

Shaker Verlag
Aachen 2017



Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche
Nationalbibliografie; detailed bibliographic data are available in the Internet at
http://dnb.d-nb.de.

Zugl.: Munchen, Techn. Univ., Diss., 2017

Copyright Shaker Verlag 2017

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording or otherwise, without the prior permission
ofthe publishers.

Printed in Germany.

ISBN 978-3-8440-5303-6

ISSN 0945-0807

Shaker Verlag GmbH « P.O.BOX 101818 « D-52018 Aachen

Phone: 0049/2407/9596-0 - Telefax: 0049/2407/9596-9
Internet: www.shaker.de « e-mail: info@shaker.de



Thanks to my family.






Acknowledgements

First and foremost, T would like to express my sincere gratitude to my supervisor, Dr.
Martin Kleinsteuber, for his continuous support to my Ph.D. study. His deep insights
and meticulous guidance helped me through all the time in research and writing of this
dissertation. Especially, I want to thank him for his financial support in the last year.

My cordial thanks also go to Prof. Dr.-Ing. Klaus Diepold for his kind support to my
doctoral degree program for providing me with facilities and personnels, in particular, for
his generosity to take care of the administration of my dissertation examination.

I wish to express my gratitude to my mentor, Dr. Hao Shen, for his insightful comments
and encouragement, especially, for his patience and expertise in teaching me research and
scientific writing.

I would like to acknowledge the financial support from China Scholarship Council (CSC)
for provision of scholarship. They gave me a financial support for four years of studies and
researches. I am grateful to TUM graduate school for their support to my international
visits and other academic activities.

I thank my colleagues from GOL and LDV. They are Dr. Michael Zwick, Dr. Simon
Hawe, Clemens Hage, Martin Kiechle, Dominik Meyer, Matthias Seibert, Alexander Sagel,
Julian Wérmann, Sunil Ramgopal Tatavarty, Peter Hausamann and Sundeep Patil. T am
lucky to share the happy five years with them. My thanks are also due to Ms. Ricarda
Baumbhoer for her assistance and advices on administration through my Ph.D. study.

T would like to express my special thanks to Simon Hawe, Clemens Hage and Martin
Kiechle, for their advices and software support for my Ph.D. research. My special thanks
are also due to my colleagues in the same office, Martin Knopp, Alexander Sagel and Peter
Hausamann, I am happy to work with them.






Abstract

Recent development in representation learning shows that appropriate data representations
are the key to the success of machine learning algorithms, since different representations
can entangle different explanatory information of the data. Among the various methods of
learning representations, sparse representations of data have been observed to contain rich
distributed information of the data with respect to specific learning tasks, such as image
classification, regression, etc. By taking advantage of such a benefit, the focus of this dis-
sertation is on developing algorithmic framework that allows disentangling the underlying
explanatory factors hidden in sparse representations of image and video data. For example,
explanatory information considered in this dissertation can be an underlying linear system
that explains the dynamics of texture videos, or the similarity of image data points that
explores the intrinsic structure of data. Moreover, such disentangled factors have shown
to conveniently solve various computer vision problems. Specifically in this dissertation,
they are dynamic texture modeling and low dimensional image representations. The key
concept behind this development is to construct a joint cost function, which combines the
criteria for learning sparse representations and the criteria for discovering underlying factors
in the learned sparse representations. Since the admissible sets of solutions to our opti-
mization problem are restricted on appropriate matrix manifolds, geometric optimization
techniques that exploit the underlying manifold structures of solutions can be employed to
efficiently solve such an optimization problem. Finally, we leverage the advantage of differ-
ential geometric optimization to develop a collection of efficient algorithms on appropriate
differentiable manifolds.

The key difficulty for solving the proposed joint learning problem is the differentiability
of sparse representation with respect to a given dictionary. For addressing such a challenge,
we consider the sparse coding problem by minimizing a quadratic reconstruction error with
appropriate convex sparsity priors, such as elastic net prior and Kullback-Leibler divergence
prior. In this way, sparse representation can be shown to be a locally differentiable function
with respect to a dictionary, and hence a generic form of the directional derivative of sparse
representation with respect to the given dictionary is developed. The ability to compute
such a derivative leads to various further learning mechanisms in sparse representations
that disentangle different underlying explanatory factors. By leveraging such an algorithmic
benefit and geometric optimization techniques, in what follows, we construct joint learning
cost functions to study two aforementioned challenging computer vision problems, dynamic
textures and image dimensionality reduction.

Modeling Dynamic Textures (DT) is a long standing active research topic in the computer
vision community. Study and analysis of DT attracts both theoretical and practical research
efforts, such as building a stable DT modeling system, video segmentation, video recogni-
tion and video synthesis. However, the continuous change in the shape and appearance
of a dynamic texture makes the application of traditional computer vision algorithms very



challenging. Thus, finding an appropriate spatio-temporal generative representation model
to explore the evolution of the dynamic textured scenes is the key to many DT studies. One
classical technique is to model the dynamical course of DTs as a Markov random process.
Following the Markov random process, one typical model is developed and widely applied
to the practice, namely, linear dynamical system (LDS). LDS assumes that each observation
is correlated to an underlying latent variable, or “state”, and the dynamic process of these
consecutive states can be captured by a parameter transition operator. In this dissertation,
we follow the framework of classical T.DS, and present to treat the sparse coefficients over a
learned dictionary as the underlying “states”. In this way, the dynamical process of dynamic
textures exhibits a transition course of corresponding sparse events. Next, our goal is to find
a suitable and robust linear transition matrix that captures the dynamics between two adja-
cent frames of sparse representations in time series. Under several reasonable assumptions,
we read this transition as a linear transformation matrix with the constraint of stability.
Under this way, a DT sequence is represented by an appropriate sparse transition matrix
together with a dictionary, shortly called DT parameters. Such learned DT parameters can
be used for various DT applications, such as DT synthesis, recognition and denoising.

The second computer vision problem studied in this dissertation is finding an appropri-
ate low dimensional representations of raw images. It is known that natural images are
often very high dimensional, statistically non-Gaussian, and show abundant varying texture
patterns. Hence, they are difficult to be explicitly parameterized by a common probabilis-
tic model. Therefore, some machine learning techniques, such as linear smooth regression,
may not be directly used to construct the prediction model for such raw images. Finding
appropriate low dimensional representations of image data is an efficient way to promote
the further prediction models learning. In this dissertation, we present a unified algorith-
mic framework for learning low dimensional representations of images for the three classic
machine learning scenarios of unsupervised, supervised and semi-supervised learning. The
core concept of our development is to combine two popular data representation criteria,
namely sparsity and trace quotient. The former is known to be a convenient tool to identify
underlying factors, and the latter is known for disentangling underlying discriminative fac-
tors. We construct a generic cost function for learning jointly a sparsifying dictionary and
a dimensionality reduction transformation. The proposed cost function covers a wide range
of classic low dimensional representation methods, such as Principal Component Analysis,
Local Linear Embedding, Laplacian Eigenmap, Linear Discriminant Analysis (LDA), Semi-
supervised LDA, and more. Experimental evaluations on image classification, clustering, 2/3
D visualization, and object categorization demonstrate the strong competitive performance
in comparison with state-of-the-art algorithms.
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