Numerische Beschreibung reaktiver Zweiphasenströmungen für technische Anwendungen

Vom Fachbereich Maschinenbau an der Technischen Universität Darmstadt zur Erlangung des Grades eines Doktor-Ingenieurs (Dr.-Ing.) genehmigte

Dissertation

vorgelegt von

Jean Cyriac George Kadavelil M. Sc.

aus Groß-Gerau

Berichterstatter:	Prof. DrIng. J. Janicka
Mitberichterstatter:	Prof. Dr. rer. nat. M. Schäfer
Tag der Einreichung:	24. Oktober 2016
Tag der mündlichen Prüfung:	12. Dezember 2016

Darmstadt 2017

D17

Berichte aus dem Maschinenbau

Jean C. G. Kadavelil

Numerische Beschreibung reaktiver Zweiphasenströmungen für technische Anwendungen

D 17 (Diss. TU Darmstadt)

Shaker Verlag Aachen 2017

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: Darmstadt, Techn. Univ., Diss., 2017

Copyright Shaker Verlag 2017 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8440-5110-0 ISSN 0945-0874

Shaker Verlag GmbH • Postfach 101818 • 52018 Aachen Telefon: 02407 / 95 96 - 0 • Telefax: 02407 / 95 96 - 9 Internet: www.shaker.de • E-Mail: info@shaker.de

Danksagung

Die vorliegende Arbeit entstand im Rahmen meiner fünfjährigen Tätigkeit als wissenschaftlicher Mitarbeiter am Fachgebiet Energie- und Kraftwerkstechnik der Technischen Universität Darmstadt. Mein Dank gebührt Herrn Prof. Dr.-Ing. Johannes Janicka, dem Leiter des Fachgebiets, für die Ermöglichung meiner Promotion und für sein Vertrauen in meine Person.

Herrn Prof. Dr. rer. nat. Michael Schäfer danke ich für die Übernahme des Koreferats und das Interesse an meiner Arbeit.

Danken möchte ich auch Herrn Dr. Ruud Eggels und Herrn Dr.-Ing Max Staufer für ihre Unterstützung bei der Arbei mit dem Strömungslöser PRECISE-UNS.

Ein großer Dank geht an alle Kollegen des Fachgebiets Energie- und Kraftwerkstechnik und des Fachgebiets Reaktive Strömungen und Messtechnik für die freundschaftliche Atmosphäre und die gute Zusammenarbeit. Erwähnen möchte ich an dieser Stelle Félix Raynaud und Fernando Sacomano Filho. Die fachlichen Diskussionen mit ihnen habe ich sehr geschätzt und sie haben damit einen Teil zum Gelingen dieser Arbeit beigetragen. Aber auch die freundschaftlichen Diskussionen mit Ilya Shevchuk, Timo Klenke, Andreas Ludwig, Markus Schmitt, Jhon Pareja Restrepo und Johannes Weinkauff möchte ich besonders erwähnen. Meinem langjährigen Bürokollegen Andreas Ludwig danke ich zudem für das Korrekturlesen dieser Arbeit.

Mein größter Dank geht an meine Familie. Meiner Schwester Gisa danke ich für die Diskussionen, die motivierenden Worte und für ihre Unterstützung, speziell in den letzten Wochen der Promotion. Bei meinen Eltern möchte ich mich bedanken für ihren stetigen Rückhalt und für all die Möglichkeiten, die sie mir eröffnet haben.

Inhaltsverzeichnis

1	Ein	leitung	ç 1
	1.1	Motiva	ation
	1.2	Stand	der Forschung
	1.3	Ziel de	er Arbeit
	1.4	Strukt	ur der Arbeit
2	The	oretise	che Grundlagen 7
	2.1	Grund	lgleichungen der Strömungsdynamik
		2.1.1	Massenerhaltung
		2.1.2	Speziestransport
		2.1.3	Impulserhaltung
		2.1.4	Energiebilanzgleichung
		2.1.5	Zustandsgleichungen
	2.2	Turbu	lente Strömungen
		2.2.1	Statistische Beschreibung turbulenter Strömungen
		2.2.2	Turbulente Skalen und Energiespektrum
	2.3	Zweip	hasenströmungen
		2.3.1	Klassifikation von Zweiphasenströmungen
		2.3.2	Statistische Beschreibung disperser Systeme
	2.4	Verbre	ennung
		2.4.1	Reaktionskinetik
		2.4.2	Flammentypen
			2.4.2.1 Vormischflammen
			2.4.2.2 Diffusionsflammen
		2.4.3	Sprayverbrennung
3	Mo	dellier	ung reaktiver Zweiphasenströmungen 27
	3.1	Model	lierung turbulenter Strömungen
		3.1.1	Direkte-Numerische-Simulation (DNS)
		3.1.2	Revnolds-Averaged-Navier-Stokes (RANS)
		3.1.3	Large-Eddy-Simulation (LES)
		0.2.0	3.1.3.1 Feinstrukturmodellierung
	3.2	Model	lierung von Zweiphasenströmungen
		3.2.1	Euler-Euler Verfahren
		3.2.2	Euler-Lagrange-Verfahren
			3.2.2.1 Tropfenbewegung
			3.2.2.2 Tropfenverdampfung

		3.2.2.3 Phasenwechselwirkung	37
	3.3	Verbrennungsmodellierung	38
		3.3.1 Beschreibung der Chemie	38
		3.3.1.1 FGM-Modell	38
		3.3.2 Turbulenz-Chemie-Interaktion	40
		3.3.2.1 PDF Integration für Diffusionsflammen	41
		3.3.2.2 ATF-Modell für Vormischflammen	42
4	Nur	nerische Methoden	47
-	4.1	PRECISE-UNS	47
	4.2	Kontinuierliche Phase	48
	1.2	4.2.1 Diskretisierung	48
		4.2.1 Konvektiver Term	49
		4.2.1.1 Diffusiver Term	51
		4.2.1.2 Instationärer Term	51
		4.2.2. Startwerte und Bandhedingungen	51
		4.2.2 Druckkorrektur	52
		4.2.5 Diuckkonektui	52
	12	4.2.4 Destimining der Temperatur	54
	4.5	A 2 1 Zoitintegration	54
		4.3.1 Zentintegration	54
		4.3.2 Iropteninjektion	99
5	Ver	ifikation und Validierung	59
	5.1	Tropfenbewegung	59
		5.1.1 Numerischer Aufbau	59
		5.1.2 Referenzlösung	60
		5.1.3 Ergebnisse	61
	5.2	Verdampfungsmodelle	61
		5.2.1 Numerischer Aufbau	62
		5.2.2 Ergebnisse	63
	5.3	Tropfeninjektion	65
		5.3.1 Numerischer Aufbau	66
		5.3.2 Ergebnisse	66
	5.4	Eindimensionale laminare Flammen	67
		5.4.1 Wahl der Reaktionsfortschrittsvariablen	68
		5.4.2 Numerischer Aufbau	70
		5.4.3 Ergebnisse	70
	5.5	Verdampfung bei Verwendung aufgedickter Flammen	73
		5.5.1 Numerischer Aufbau	73
		5.5.2 Ergebnisse	74
6	Sim	ulation des Sydney-Spray-Brenners	77
0	61	Experimenteller Aufhau	77
	6.2	Auswahl der Betriebenunkte	70
	6.3	Nicht roaltiva Untersuchung Sph	19
	0.5	6.2.1 Numerischer Aufbau	01
		U.J.I TVIIHEHSCHEI AUIDAU	04

		6.3.2	Ergebnisse	. 84
	6.4 Reaktive Untersuchung - AcF3		. 90	
		6.4.1	Analyse der Flammenmodelle	. 91
			6.4.1.1 Numerischer Aufbau	. 91
			6.4.1.2 Ergebnisse	. 93
		6.4.2	Einfluss des Wärmeübergangs zwischen den Phasen	. 98
			6.4.2.1 Numerischer Aufbau	. 98
			6.4.2.2 Ergebnisse	. 98
	6.5	Reakti	ve Untersuchung - AcF6	. 103
		6.5.1	Numerischer Aufbau	. 104
		6.5.2	Ergebnisse	. 104
		6.5.3	Parametervariation im ATF-Modell	. 109
			6.5.3.1 Numerischer Aufbau	. 109
			6.5.3.2 Ergebnisse	. 109
	6.6	Fazit		. 113
7	Sim	ulatior	einer Flugzeugtriebwerksbrennkammer	115
	7.1	Experi	menteller Aufbau	. 115
	7.2	Numer	ischer Aufbau	. 117
	7.3	Ergebr	nisse	. 121
	7.4	Fazit		. 124
8	Zus	ammer	afassung und Ausblick	125
Li	terat	urverz	eichnis	127

Tabellenverzeichnis

2.1	Charakteristische Durchmesser	16
$5.1 \\ 5.2 \\ 5.3$	Stoff- und Partikeleigenschaften für den Bahnlinien-Testfall Einzeltropfen-Verdampfungsfälle Sprayverteilung für Verifikationsfall	60 63 66
$ \begin{array}{l} 6.1 \\ 6.2 \\ 6.3 \end{array} $	Sp6-Randbedingungen . Randbedingungen des AcF3-Falls . Randbedingungen des AcF6-Falls .	81 91 103
7.1	Randbedingungen des EDS-Betriebspunkts a	117

Abbildungsverzeichnis

2.1	Schematische Darstellung des Energiespektrums	13
2.2	Spray Regime nach Elghobashi	15
2.3	Qualitative Struktur einer Vormischflamme	19
2.4	Schematische Darstellung einer turbulenten (links) und laminaren (rechts)	
	Flammenfront	20
2.5	Qualitative Struktur einer Diffusionsflamme	21
2.6	Dynamik einer laminaren Sprayflame [58]	23
2.7	Verbrennungsmoden einer Brennstofftropfenwolke nach Chiu, Kim und	
	Croke [9]	24
2.8	Generische Sprayflammenstrukturen nach Reveillon und Vervisch [59]	25
3.1	Schematische Darstellung eines sich durch eine Flammenfront bewegenden	
	Tropfens	45
4.1	Schematische Darstellung eines zweidimensionalen Kontrollvolumens ${\cal P}$	
	und seiner Grenzflächen	48
4.2	Interpolationskorrektur bei verzerrten Zellen	50
4.3	Schematische Darstellung der Tropfeninjektion	56
5.1	Aufbau des Bahnlinien-Testfalls	60
5.2	Vergleich der zeitlichen Verläufe der Partikelposition in der Simulation in	
	PRECISE-UNS und der Referenzlösung aus MATLAB [®]	61
5.3	Zeitlicher Verdampfungsverlauf eines Wassertropfens (Fall 1)	64
5.4	Zeitlicher Verdampfungsverlauf eines Hexantropfens (Fall 2)	64
5.5	Zeitlicher Verdampfungsverlauf eines Decantropfens (Fall 3)	65
5.6	Auswertung der statistischen Tropfendurchmesser in der Injektionsebene	67
5.7	Auswertung der Tropfengeschwindigkeiten in der Injektionsebene	67
5.8	Speziesverläufe der jeweils betrachteten Spezies bzw. Spezieskombination	
	entlang der laminaren Vormischflamme für vier verschiedene Mischungs-	
	brüche	69
5.9	Quellterm der jeweils betrachteten Spezies bzw. Spezieskombination für	
	eine stöchiometrische Vormischflamme	69
5.10	Links: Auflösung des Quellterms der Reaktionsfortschrittsvariblen ${\mathcal Y}$ für	
	die untersuchten Gitterweiten Δx bei stöch iometrischer Zusammensetzung.	
	Rechts: Ausgewertete laminare Flammengeschwindigkeiten \boldsymbol{s}_l für die jewei-	
	ligen Gitterweiten bei stöchiometrischer Zusammensetzung	71
5.11	Verläufe der wichtigsten Spezies und der Temperatur einer laminaren	
	Aceton-Vormischflamme unter stöchiometrischen Bedingungen.	72

	5.12	Auswertung der laminaren Flammenausbreitungsgeschwindigkeit s_l und der laminaren Flammendicke δ_l aufgetragen über den Mischungsbruch Z.		73
,	5.15	Vormischflamme. \ldots		74
	6.1 6.2 6.3	Qualitative Darstellung des Aufbaus des Sydney-Spray-Brenners Darstellung der Sp-Betriebspunkte	•	78 80
1	6.4	Schnittansicht durch das numerische Gitter für die Untersuchungen des Sydnev-Sprav-Brenners	•	82
1	6.5	Unterteilung der experimentell gemessenen Tropfenverteilung in 15 Trop- fenklassen, beispielhaft dargestellt für die radiale Position $r = 8 \text{ mm}$		84
1	6.6	Auswertung der Mittelwerte und Standardabweichungen der Tropfenge- schwindigkeiten für Sp6		85
1	6.7	Auswertung der Mittelwerte und Standardabweichungen der Gasphasengeschwindigkeiten für Sp6		86
	$6.8 \\ 6.9$	Auswertung der Gasphasentemperatur für Sp6	•	88
1	6.10	Auswertung der Mittelwerte und Standardabweichungen der Tropfenge-	•	89
,	6.11	schwindigkeiten für AcF3 für die Flammenmodelle β -PDF und ATF Links: Auswertung der Gasphasentemperatur und der Mischungsbruchverteilung für AcF3 für die Flammenmodelle β -PDF und ATF. Rechts: Konturdiagramm der instantagen Qualitarmuterielung der Bealtionsfort	•	93
	6 19	schrittsvariablen in der ATF-Simulation		94
	6.13	Auswertung des Volumennusses der Flüssigkeit und der Statistischen Durchmesser für AcF3 für die Flammenmodelle β -PDF und ATF Auswertung der Gasphasentemperatur der Mischungsbruchverteilung so-	•	97
	0.10	wie der Mittelwerte und Standardabweichungen der axialen Tropfenge- schwindigkeit für die zwei β -PDF-Simulationen von AcF3		99
,	6.14	Auswertung der Gasphasentemperatur, der Mischungsbruchverteilung so- wie der Mittelwerte und Standardabweichungen der axialen Tropfenge- schwindigkeit für die zwei ATE Simulationen von AcE2		100
1	6.15	Auswertung des Volumenflusses der Flüssigkeit und der statistischen Durchmesser für die zwei β -PDF-Simulationen von AcF3	•	100
1	6.16	Auswertung des Volumenflusses der Flüssigkeit und der statistischen Durchmesser für die zwei ATF-Simulationen von AcF3		102
1	6.17	Auswertung der Mittelwerte und Standardabweichungen der Tropfengeschwindigkeiten für AcF6		105
1	6.18	Auswertung der Mittelwerte und Standardabweichungen der Gasphasenge- schwindigkeiten für AcF6		106
1	6.19	Links: Auswertung der Gasphasentemperatur und der Mischungsbruchver- teilung für AcF6. Rechts: Konturdiagramm der instantanen Quelltermver-		
,	6.20	teilung der Reaktionsfortschrittsvariablen	•	107
		Durchmesser für AcF6		108

6.21	Auswertung des Gasphasentemperatur, der Mischungsbruchverteilung und
	der Mittelwerte und Standardabweichung der axialen Tropfengeschwindig-
	keit für die zwei ATF-Simulationen von AcF6
6.22	Vergleich der instantanen Quelltermverteilungen der Reaktionsfortschritts-
	variablen
6.23	Auswertung des Volumenflusses der Flüssigkeit und der statistischen
	Durchmesser für die zwei ATF-Simulationen von AcF6
77 1	
7.1	Schematische Darstellung des Aufbaus des EDS
7.2	Schnittansicht des numerischen Gitters für die Simulation des EDS 118
7.3	Randflächen des EDS-Gitters
7.4	Schematische Darstellung der Bestimmung des numerischen Injektionsbe-
	reichs mittels Projektion der ersten Messebene auf die Spitze der Filmle-
	gerlippe
7.5	Qualitativer Vergleich der Verteilung des flüssigen Brennstoffs 121
7.6	Auswertung Tropfengeschwindigkeiten und der statistischen Durchmesser
	für den EDS
7.7	Vergleich der mittleren Gasphasentemperatur

Nomenklatur

Große lateinische Buchstaben

Einheit

B_M	Stoffübergangszahl	-
B_T	Wärmeübergangszahl	-
C	normierte Reaktionsfortschrittsvariable	-
C_G	Modellparameter des Germano-Modells	-
C_S	Modellparameter des Smagorinsky-Modells	
D_d	Durchmesser der dispersen Phase	m
D_k	Diffusionskoeffizient der Spezies k	$m^2 \cdot s$
E	Effizienzfunktion	-
$E_{\rm A}$	Aktivierungsenergie	$\mathrm{kg} \cdot \mathrm{m}^2 \cdot \mathrm{s}^{-2} \cdot \mathrm{mol}^{-1}$
F	Aufdickungsfaktor	-
$F_{\rm G}$	Gravitationskraft	${ m kg} \cdot { m m} \cdot { m s}^{-2}$
$F_{\rm W}$	Widerstandskraft	${ m kg} \cdot { m m} \cdot { m s}^{-2}$
G	Gruppenverbrennungszahl	-
$H_{\rm M}$	Modellparameter der Verdampfungsmodell	ierung –
L_c	charakteristische Länge	m
L_v	Verdampfungswärme	${ m J} \cdot { m kg}^{-1}$
L_{ij}	integrales Längenmaß	m
N	Anzahl der Zeitschritte	-
$N_{\rm A}$	Avogadro-Konstante	mol^{-1}
R_u	universelle Gaskonstante	$\mathrm{kg} \cdot \mathrm{m}^2 \cdot \mathrm{s}^{-2} \cdot \mathrm{mol}^{-1} \cdot \mathrm{K}^{-1}$
R_{ij}	Korrelationsfunktion	-
S	Quellterm der dispersen Phase	*
δS_c	Oberfläche der Kontrollvolumenseite c	m^2
Т	Temperatur	К
T_{ij}	integrales Zeitmaß	S
U_c	charakteristische Strömungsgeschwindigkei	t $m \cdot s^{-1}$
V	Volumen	m^3
δV	Volumen eines Kontrollvolumens	m^3

W	Molmasse	$\mathrm{kg}\cdot\mathrm{mol}^{-1}$
X	Molenbruch	-
Y	Massenbruch	-
\mathcal{Y}	Reaktionsfortschrittsvariable	-
Ζ	Mischungsbruch	-
Z	Massenbeladung	-

Kleine lateinische Buchstaben

Einheit

a	Streckungsrate	s^{-1}
a_k	Gewichtungsfaktor der Spezies k	-
c_{W}	Widerstandskoeffizient	_
c_k	Spezieskonzentration der Spezies k	${ m mol} \cdot { m m}^{-3}$
c_l	Wärmekapazität der Flüssigkeit	$J \cdot kg^{-1} \cdot K^{-1}$
c_p	Wärmekapazität bei konstanten Druck	$J \cdot kg^{-1} \cdot K^{-1}$
e_r	normalverteilte Zufallszahl	
$f_{\rm T}$	Modellparameter der Verdampfungsmodellierung	_
g	Erdbeschleunigung	${ m m\cdot s^{-2}}$
h	Enthalpie	J
p	Druck	$\mathrm{kg}\cdot\mathrm{m}^{-1}\cdot\mathrm{s}^{-2}$
$q_{\rm i}$	Wärmestromvektor	$J \cdot m^{-2} \cdot s^{-1}$
r	Reaktionsgeschwindigkeit	${ m m}\cdot{ m s}^{-1}$
s_1	laminare Flammenausbreitungsgeschwindigkeit	${ m m}\cdot{ m s}^{-1}$
u_i	Geschwindigkeit	${ m m}\cdot{ m s}^{-1}$
$z_{\rm e}$	Elementmassenbruch des Elements e	_

Große griechische Buchstaben

Einheit

Einheit

Ω	Flammensensor	_
Φ	Äquivalenzverhältnis	_
Θ_1	Verhältnis der Wärmekapazitäten	_

Kleine griechische Buchstaben

$\begin{array}{c} \alpha & & \text{Volumenanteil} \\ \beta & & \text{Modellparameter} \end{array}$

β_{bl}	Blendingfaktor	-
χ	skalare Dissipationsrate	s^{-1}
δ_l	laminare Flammendicke	m
ε	turbulente Dissipationsrate	$m^2 \cdot s^{-3}$
$\eta_{\rm K}$	Kolmogorov-Längenmaß	m
γ	Gewichtungsfaktor	-
κ	Wellenzahl	m^{-1}
λ	Wärmeleitkoeffizient	$\mathrm{kg}\cdot\mathrm{m}^{2}\cdot\mathrm{K}^{-1}\cdot\mathrm{s}^{-2}$
μ	dynamische Viskosität	$\rm kg\cdot m^{-1}\cdot s^{-1}$
ν	kinematische Viskosität	$m^2 \cdot s^{-1}$
ν_t	turbulente Viskosität	$m^2 \cdot s^{-1}$
$\dot{\omega}_k$	Quellterm der Spezies k	$\rm kg\cdot m^{-3}\cdot s^{-1}$
ρ	Dichte	${ m kg} \cdot { m m}^{-3}$
σ_d	Oberflächenspannung	-
$ au_{\mathrm{K}}$	Kolmogorov-Zeitmaß	S
$ au_d$	Partikelrelaxationszeit	S
$ au_{ij}$	Spannungstensor	$\rm kg\cdot s^{-2}\cdot m^{-1}$
ξ_i	transformiertes Koordinatensystem	m

Tiefgestellte Indizes

0	Ursprungszustand (zeitlich)
·0	
·∞	außerhalb des Einflussbereiches
·b	Indexwert für Rückwärtsreaktion (engl. backward)
$\cdot Br$	Brennstoff
·c	Seite c des Kontrollvolumens
$\cdot d$	disperse Phase
·eq	Indexwert für Gleichgewichtszustand (engl. equilibrium)
٠f	Indexwert für Vorwärtsreaktion (engl. forward)
$\cdot G$	Gravitation
·g	Gasphase
$\cdot i, j, m$	Indexwert (ganzzahlig)
·KV	Kontrollvolumen
$\cdot k$	Spezies k
·Lu	Luft
$\cdot M$	Eigenschaft der Mischung
·max.	Maximum
·min.	Minimum
·neq	Indexwert für Ungleichgewichtszustand (engl. non-equilibrium)

$\cdot Ns$	Nebenstrom
·0	Oxidator
$\cdot Pf$	Pilotflamme
$\cdot P, N, S, E$	Berechnungspunkte
•stöch.	stöchiometrische Mischung
$\cdot S$	Eigenschaft an der Tropfenoberfläche (engl. surface)
·ub	unverbrannter Zustand
·vb	verbrannter Zustand
• <i>v</i>	Dampf (engl. vapor)

Hochgestellte Indizes

.'	Schwankungsgröße
."	Feinstrukturanteil
	Feinstruktur
. <i>r</i>	anisotroper Anteil der Feinstruktur
\cdot^{n+1}	Zeitschritt $n+1$

Operatoren und Symbole

-	Mittelwert
·	Testfilter
$\sqrt{\overline{.'^2}}$	Standardabweichung
~	Favre-gefilterte Größe
	-

Dimensionslose Kennzahlen

CFL	Courant-Friedrichs-Lewy-Zahl
Da	Damköhler-Zahl
Ma	Mach-Zahl
Nu	Nusselt-Zahl
Pr	Prandtl-Zahl
Re_{krit}	kritische Reynolds-Zahl
Re_t	turbulente Reynolds-Zahl
Re	Reynolds-Zahl

Sc	Schmidt-Zahl
Sh	Sherwood-Zahl
St	Stokes-Zahl
We	Weber-Zahl

Abkürzungen

<i>a. u.</i>	arbitrary unit
ACARE	Advisory Council for Aviation Research and Innovation
ATF	Artificially-Thickened-Flame
bzw.	beziehungsweise
CDS	Zentral-Differenzen-Verfahren
DLR	Deutschen Zentrums für Luft- und Raumfahrt e. V.
DNS	Direkte Numerische Simulation
EDS	Ein-Düsen-Sektor
FGM	Flamelet-Generated-Manifold
FPI	Flame Prolongation of Intrinsic low-dimensional manifolds
ICAO	International Civil Aviation Organization
LDI	Lean-Direct-Injection
LDV	Laser-Doppler-Velocimetry
LES	Large-Eddy-Simulationen
LIF	Laser-Induced-Fluorescence
PDA	Phase-Doppler-Anemometry
PLIF	Planare Laserinduzierte Fluoreszenz
PRECISE-UNS	Predictive-System for Real Engine combustors with Improved Sub- models and Efficiency - Unstructured
RANS	Reynolds-Averaged-Navier-Stokes
RQL	Rich-Quick-quench-Lean
RRD	Rolls-Royce Deutschland Ltd & Co KG
TCS	Turbulent Combustion of Sprays
UDS	Aufwind-Verfahren