"Manufacturing of Automotive Interior Components with Renewable Raw Materials"

"Herstellung von Automobilinnenraumkomponenten aus nachwachsenden Rohstoffen "

Von der Fakultät für Maschinenwesen der Rheinisch-Westfälischen Technischen Hochschule Aachen zur Erlangung des akademischen Grades einer Doktorin der Ingenieur-wissenschaften genehmigte Dissertation

Vorgelegt von

Sangeetha Ramaswamy

Berichter: Univ.-Prof. Prof. h.c. Dr.-Ing. Dipl.-Wirt. Ing. Thomas Gries

Dr. Russell E. Gorga

Tag der mündlichen Prüfung: 14.07.2016

Textiltechnik/Textile Technology herausgegeben von Univ. Prof. Professor h. c. (MGU) Dr.-Ing. Dipl.-Wirt. Ing. Thomas Gries

Sangeetha Ramaswamy

Manufacturing of Automotive Interior Components with Renewable Raw Materials

Shaker Verlag Aachen 2017

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available in the Internet at http://dnb.d-nb.de.

Zugl.: D 82 (Diss. RWTH Aachen University, 2016)

Copyright Shaker Verlag 2017 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the publishers.

Printed in Germany.

ISBN 978-3-8440-5107-0 ISSN 1618-8152

Shaker Verlag GmbH • P.O. BOX 101818 • D-52018 Aachen Phone: 0049/2407/9596-0 • Telefax: 0049/2407/9596-9 Internet: www.shaker.de • e-mail: info@shaker.de

Acknowledgements

This dissertation has been developed during my employment as a research scientist at the Institut für Textiltechnik, RWTH Aachen University. At the end of this very significant journey I feel humble and grateful. I want thank a few people who made this journey possible.

I am sincerely thankful to Prof. Gries for the environment of independent working he has created at ITA, and at the same time expecting nothing but the highest standards from his employees. Though I stumbled and fell and got up all by myself, the last five years have marked the steepest rise in my personal growth.

I would like to thank Dr. Gorga, for agreeing to second chair my dissertation and agreeing to attend my defense in Aachen. I am eternally thankful to Dr. Gorga for staying in touch and continuing to support me years after we worked together. Moreover, I humbly thank Prof. Schmachtenberg for being a part of my examination committee and chairing the oral examination procedures.

Furthermore, I would like to warmly thank my colleagues in the secretary's office – Sabine and Caroline, in the machine lab – Dirk, Dirk and Hans, in the testing lab – Michael, Monika, Jennifer, Nadine, Marite and Ursula. I want to further thank my department – my colleagues and ex-colleagues – Tristan, Fabian, Christian, Sven, Frederik, Claus for the great working environment and the constant support. My projects were also often across departments – I would like to thank Bayram, Karl-Heinz, Eric, Marie, Benedikt, Stefan, Jan, Nicole, Achim and Udit for the fruitful collaboration in various projects.

I would also like to thank my students and my 'Hiwis' (student assistants) from the last 5 years, who were a part of the research group 'Textiles and composites from renewable raw materials' and always inspired me with their energies and ideas – Sandra, Jennifer, Harpreet, Marcel, Jeanette, Christoph, Lucas and many more.

A special thanks to Frau Cremer for being so helpful in acquiring the required literature, for helping me compile my bibliography and for maintaining such a

sacred environment in the library. Thank you, Dr. Dieter Veit, for proof reading my thesis and for your constructive inputs to improve my thesis.

The last few years also have gifted me with a few beautiful friendships – Thank you so much Alexandra Jünger, Ingo and Andrea Reinbach, Irene, Stephen, Julian, Florian, Bayram, Eric, Mario, Christopher, Marco and Alex for making this '*Ausländerin*' feel at home. Also thanks to the beautiful friendships I have made as a part of this journey – Neha, Kaustubh, Aditya and Madhura and the Art of Living group.

The constant unwavering support of my family through this challenging journey has given the emotional and moral strength to complete this journey. Thank you Amma, Shankar, Maa and Papa!

Lastly, I thank the two people without whom I wouldn't have come to an end of my PhD journey – Thank you Mohit for never giving up on me.

Avnish, I dedicate this thesis to you, for thank you is too little to express my gratitude!

Contents

1	Introduction			
	1.1	Current applications of textiles in the automotive sector	1	
	1.2	Need for raw materials with better environmental impact	2	
	1.3	Renewable raw materials in the automotive industry	3	
2	Res	earch objectives	8	
3	Review of bio-based fibres			
	3.1	Natural fibres	12	
	3.1.	1 Flax	16	
	3.1.2	2 Hemp	23	
	3.2	Bio-polymers	25	
4	Rev	iew of relevant technologies	32	
	4.1	Nonwoven technology	32	
	4.1.	1 Dry laid technology	33	
	4.1.2	2 Air lay technology	36	
	4.1.3	3 Needle-punching	38	
	4.2	Composite technology	40	
	4.3	Effect of materials, technology and processing on the properties		
		of composites	43	
	4.3.	1 Theoretical models for prediction of composite properties	44	
	4.3.2			
		composites	47	
	4.3.3			
	4.0	nonwovens and composites	48	
	4.3.4	4 Effect of press moulding properties on the properties of the composites	50	
		·		
	4.4	Weaving technology	52	
5	Analysis of eco-design methods			
	5.1	Selection of materials	55	

5.2	E	co analysis	59
5.3	E	co-design	64
6 N	Nonwovens and their composites		
6.1	Ir	nvestigation of the product	71
6.	1.1	Product description of the industrial benchmark	76
		Raw materials and technologies used	77
6.	1.3	Technical properties	80
6.2	P	reliminary trials with alternative materials	84
	2.1		84
		Initial trials – manufacturing of nonwovens	86
		Process modification	89
6.	2.4	Comparison to benchmark	91
6.3	P	Process analysis	91
	3.1		92
6.	3.2	Influence of process	102
6.4	P	ilot manufacturing	107
	4.1	Definition of prototype product	107
		Development of prototype product	110
6.	4.3	Analysis of thermoforming process	112
6.5	Т	echnical analysis	115
6.6	E	nvironmental analysis	116
6.	6.1	Goal and scope	117
6.	6.2	Data accumulation	117
6.	6.3	Impact assessment and interpretation	119
6.7	N	Iulti-criteria analysis	133
6.8	S	Summary	136
7 W	Woven fabrics		138
7.1	Ir	nvestigation of the product	138
7.	1.1	Product description of the industrial benchmark	140
7.	1.2	Raw materials and technologies used	141
7.	1.3	Technical properties	142

7	.2 Preliminary trials with alternative materials	145
	7.2.1 Characteristics of the alternative materials used	145
	7.2.2 Initial trials – manufacturing of narrow fabrics	146
7	.3 Process modification	151
	7.3.1 Trials with improved filament properties	151
	7.3.2 Comparison to benchmark	152
7	.4 Pilot manufacturing	155
	7.4.1 Broad fabrics	155
	7.4.2 Industry trials	158
7	.5 Technical analysis	159
7	.6 Environmental analysis	161
	7.6.1 Goal and scope	161
	7.6.2 Data accumulation	162
	7.6.3 Impact assessment and interpretation	163
7	.7 Multi-criteria analysis	166
7	.8 Summary	168
8	Summary	170
9	Outlook	
10	List of abbreviations	
11	Bibliography	