Crashaktive Fahrzeugstrukturen

Zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften

der Fakultät für Maschinenbau Karlsruher Institut für Technologie (KIT)

genehmigte

Dissertation

von

Dipl.-Ing. Jan-Mark Opelka

Tag der mündlichen Prüfung: Hauptreferent: Korreferent: 07.12.2016 Prof. Dr.-Ing. Peter Elsner Prof. Dr. rer. nat. Frank Gauterin

Berichte aus der Fahrzeugtechnik

Jan-Mark Opelka

Crashaktive Fahrzeugstrukturen

Shaker Verlag Aachen 2017

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: Karlsruhe, Karlsruher Institut für Technologie, Diss., 2016

Copyright Shaker Verlag 2017 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8440-4998-5 ISSN 0945-0742

Shaker Verlag GmbH • Postfach 101818 • 52018 Aachen Telefon: 02407 / 95 96 - 0 • Telefax: 02407 / 95 96 - 9 Internet: www.shaker.de • E-Mail: info@shaker.de

Kurzfassung

Als PRE-SAFE® Structures werden crashaktive Rohbaustrukturen bezeichnet. welche im Fall einer Kollision schlagartig ihre Struktureigenschaften ändern. Innerhalb weniger Millisekunden wird die Struktur unter Innendruck gesetzt und in eine funktionsoptimale Gestalt überführt. Die Energiebereitstellung zur Druckbeaufschlagung und Umformuna erfolgt mittels angepasster Gasgeneratorsysteme. Die Aktivierung basiert auf den Signalen einer lastfallspezifischen Crashsensorik. Neben der Steigerung der passiven Sicherheit Leichtbau-Bauraumpotenziale bietet die Technologie und gegenüber konventionellen Bauweisen. Bis heute existiert eine Vielzahl potenzieller Anwendungsbereiche. Zur serienreifen Umsetzung fehlen jedoch validierte Berechnungsmethoden zur Abbildung der anwendungstypischen Phänomene.

Im ersten Teil der Arbeit werden prinzipielle Szenarien der Druckbeaufschlagung an einem generischen Träger unter axialer Beanspruchung aufgezeigt und bezüglich der Steigerung der Versagenslast und der Energieaufnahme bewertet. Theoretische Grundsatz-untersuchungen belegen das hohe Potenzial crashaktiver Strukturen zur Steigerung der Crashperformance und der Massenreduktion. Parameterstudien identifizieren die Volumenvergrößerung in Kombination mit dem wirkenden Innendruck als die wesentlichen Parameter zur Steigerung der Stabilität und der Energieabsorption bei gleichzeitig erhöhter Versagenslast.

Lasttragende Strukturen innerhalb des Türrohbaus typischer Roadster-Fahrzeuge müssen aufgrund des fehlenden Dach-Lastpfads erhöhten Crash-Belastungen standhalten. Im zweiten Teil der Arbeit werden dementsprechend Anforderungen an eine crashaktive Bordkante abgeleitet. Auf Basis derer wird ein integrales Aluminium-Konzept erarbeitet, welches aus zwei umlaufend verschweißten Schalen besteht und sowohl die Gasgeneratorintegration als auch die notwendige Sensorik miteinbezieht. Am Beispiel des Frontalanpralls mit 40 % Überdeckung wird ein Auslöseszenario aufgezeigt, welches ohne den Einsatz einer vorauslösenden Sensorik auskommt.

Der dritte Teil bildet den Schwerpunkt der vorliegenden Arbeit. Anwendungsspezifische Anforderungen an die Simulationsmethodik werden abgeleitet und Defizite der etablierten Methoden aufgezeigt. Der

wärmeverlustbedingte Druckabfall im Inneren der Struktur und die Temperaturbelastung in unmittelbarer Gasgeneratornähe können derzeitig im Rahmen der Crashberechnung ebenso wenig abgebildet werden, wie ein Versagen lasergeschweißter Kehl- und I-Nähte an den anwendungsrelevanten Aluminium-Werkstoffen AA6014 bzw. AW8953.

Die Korpuskularmethode (CPM) wird als Ansatz mit dem höchsten Potenzial zur Abbildung des Aktivierungsvorgangs von crashaktiven Strukturen in LS-DYNA identifiziert. Zur Berechnung des Wärmeübergangskoeffizienten zwischen dem heißen Gas und der kühleren Struktur wird ein theoretisches 2-Phasen- und 2-Zonenmodell entwickelt. Durch eine zusätzliche thermo-mechanische Kopplung lassen sich lokal auftretende, kritische Trägererwärmungen identifizieren und noch vor der Hardware-Phase konstruktiv entschärfen. Die Implementierung in LS-DYNA erfolgt als iterative Berechnungsroutine.

Die Berücksichtigung des Wärmeverlusts führt zu einem Abfall des Innendrucks innerhalb der Struktur und ermöglicht somit eine realistischere Vorausberechnung der Struktur-performance. Der experimentell ermittelte Druckverlauf kann durch den weiterentwickelten CPM-Ansatz mit einer maximalen Abweichung < 9 % innerhalb des crashrelevanten Zeitfensters vorhergesagt werden. Sowohl der endgültige Querschnitt als auch der Umformvorgang der crashaktiven Struktur zeigen eine hohe Übereinstimmung mit den messtechnisch erfassten Werten.

Weiter werden geeignete Material- und Versagensmodelle zur Ersatzmodellierung von Laserschweißnähten identifiziert und auf der Basis von Charakterisierungsversuchen kalibriert. Das Materialmodell MAT ARUP ADHESIVE zeigt eine gute Übereinstimmung zwischen Versuch und Simulation, sowohl auf Elementarproben-Ebene, als auch für die crashaktive Bordkante. Unter Verwendung dieses spezifischen Materialdatensatzes ist eine realistische Abschätzung der maximal zulässigen Schweißnahtbelastung während des Aktivierungsvorgangs möglich.

Die abschließende Bewertung der crashaktiven Bordkante im Rahmen der Gesamtfahrzeug-Crashsimulation verdeutlicht das hohe Potenzial zur Reduktion der Bauteilmasse bei gleichzeitigem Bauraumgewinn und gesteigerter passiver Sicherheit im Frontalanprall (100 % und 40 % Überdeckung). Gegenüber der konventionellen Stahllösung wird eine Massenreduktion von ca. 8 % je Fahrzeugtüre erzielt. Gleichzeitig kann die Bauteilbreite um bis zu 46 % reduziert und die Crashperformance um bis zu 10 % erhöht werden.

Die vorliegende Arbeit zeigt erstmalig den integralen Entwicklungsprozess crashaktiver Strukturen bis hin zur Gesamtfahrzeugsimulation auf. Die erzielten Ergebnisse führen zu einem tieferen Verständnis des zugrunde liegenden Wirkprinzips und belegen das hohe Potenzial der Technologie PRE-SAFE[®] Structure. Die weiterentwickelte Simulationsmethodik leistet einen wesentlichen Beitrag zur effizienteren Entwicklung und Bewertung zukünftiger crashaktiver Strukturen in seriennahen Entwicklungsprozessen.

Crash adaptive structures

Jan-Mark Opelka

Abstract

Crash adaptive structures, so called PRE-SAFE[®] Structures, are structural components incorporated into the body-in-white. PRE-SAFE[®] Structure is an approach to transfer standard body-in-white concepts to a kind of smart system, with benefits regarding real-life safety, lightweight aspects and design freedom. In case of collisions these metallic structural components adapt their shape within a few milliseconds to a function-optimized geometry which is pre-designed and pre-evaluated at the initial design stage. To initiate pressurization and structural transformation a specifically designed inflator has to be applied.

The activation of crash-loaded components, made of steel or aluminum, is triggered by different crash sensors and load case specific trigger algorithms. Up to now, there are many concepts available to make PRE-SAFE[®] Structure technology available to regular passenger cars. To establish efficient development processes adequate simulation methodologies have to be applied, considering technology and application specific phenomena.

In the first part of the work fundamental investigations are performed on generic beam-type structures to demonstrate safety benefits under axial loading. Benefits were rated with respect to the increase of the failure load and the energy absorption. Parametric studies demonstrate the high potential for crash performance improvements and mass reduction due to the volume increase and the structural support of the internal pressure. For axial loading energy absorption can be increased up to 215 % depending on material, geometry and pressure load.

The second part of the work provides crash scenarios and roadster-specific requirements. The beltline is a high load carrying door component, which is extremely loaded during frontal impact. A beltline reinforcement has been selected to prove benefits for a unique crash-adaptive design.

Due to lightweight aspects an overall aluminum beam concept has been developed. Inflator requirements and mounting concepts are evolved and assessed. Triggering PRE-SAFE[®] Structures demand detailed understanding of sensor devices and algorithms. A representative trigger scenario is shown for a 40 % overlap frontal impact.

The third part describes in detail application-specific requirements on the simulation methodology side. Drawbacks were identified for the available commercial simulation tools. To predict structural performance and failure behavior with a high grade of accuracy enhancement is requested regarding the description of pressure loading versus time caused by heat transfer as well as the joining of the aluminum components by means of laser welding.

Using LS-DYNA for non-linear finite element crash analysis within the present work suitable material and failure models of laser welds have been identified and calibrated on the basis of tensile and shear characterization tests. The material model MAT ARUP ADHESIVE shows good correlation between experimental testing and simulation for the test specimen as well as for the selected demonstrator, the crash-adaptive beltline reinforcement.

The corpuscular method (CPM) has been identified as the most powerful approach to predict the transformation process of crash-adaptive structures using LS-DYNA as simulation tool. Therefore a two-phase and two-zone model has been developed in theory. The model has been implemented in LS-DYNA and provides the calculation of the heat transfer coefficient acting between the hot gas and the less hot aluminum or steel structure. The implementation in LS-DYNA has been carried out as an iterative calculation routine. The consideration of the heat loss results in a drop of the internal pressure and allows a realistic prediction of the structural performance.

Due to the additional thermo-mechanical coupling critical heat zones can be identified and considered during the early design process before starting to manufacture prototypes. The experimentally determined pressure profile can be predicted with accuracy higher than 90 % using the improved CPM approach. Both,

the final cross-section shape and the unfolding of the crash-adaptive structures show a high correlation with experimental evaluations.

The final evaluation of the crash-adaptive beltline reinforcement demonstrates the high potential of mass reduction and passive safety improvements up to 10 % for frontal impacts. Compared to conventional steel solutions, a mass reduction of about 8 % per vehicle door has been achieved. In addition the component width can be reduced by up to 46 %. The reduction creates additional interior design freedom as well as safety space for the passenger of the vehicle.

Vorwort

Die vorliegende Arbeit entstand während meiner Tätigkeit als Doktorand im Bereich der Rohbau-Vorentwicklung (RD/RKR) der Daimler AG in Sindelfingen zwischen 2011 und 2016.

Mein besonderer Dank gilt meinem Doktorvater Herrn Prof. Dr.-Ing. Peter Elsner vom Fraunhofer-Institut für Chemische Technologie (ICT) in Pfinztal für die fachliche Begleitung, die Abnahme der Promotionsprüfung und die Möglichkeit zu selbstständigem und eigenverantwortlichem Arbeiten, sowie meinem Institutsbetreuer Herrn Dr.-Ing. Jochen Neutz für die vielen fruchtbaren Diskussionen und hilfreichen Ratschläge. Darüber hinaus möchte ich mich bei Herrn Prof. Dr. rer. nat. Frank Gauterin und bei Herrn Prof. Dr.-Ing. Martin Gabi für die Übernahme des Koreferats sowie die Abnahme der Prüfung bedanken.

Weiter möchte ich mich insbesondere bei meinem langjährigen Vorgesetzten und Industriebetreuer Herrn Dr.-Ing. Matthias Nohr für die Möglichkeit der Promotion in seinem Team, seine Unterstützung, seine Expertise und die vielen produktiven Gespräche bedanken.

Meinen Kollegen Herrn Dr. rer. nat. Gerhard Summ, Herrn Dr.-Ing. Levent Aktay, Herrn Franz Maier und Herrn Franz-Josef Bayer danke ich für die Unterstützung bei der Einarbeitung in die Crash-Simulation, die zahlreichen Expertengespräche und die überaus kollegiale Arbeitsatmosphäre.

Weiterer Dank gilt Herrn Dr.-Ing. Markus Feucht und Herrn Dr.-Ing. Tobias Graf für die fachliche Betreuung und die Hilfestellung beim Modellaufbau und der Simulation der Charakterisierungsproben. Meinen Dank möchte ich ebenfalls Herrn Sebastian Stahlschmidt, Frau Katharina Witowski und Herrn Dr.-Ing. Ingolf G. Lepenies für die Implementierung der entwickelten Berechnungsroutine in LS-DYNA aussprechen.

Bedanken möchte ich mich darüber hinaus bei den Mitarbeitern der Firmen Autoliv und Livbag Herrn Bengt Pipkorn, PhD, Herrn Stefan Brands, Herrn Berthold Ruess sowie Herrn Nicolas Daviot und ihren Mitarbeitern für die Durchführung der Aktivierungsversuche und die Bereitstellung simulationsrelevanter Gasgeneratordaten. Mein Dank richtet sich darüber hinaus an Herrn Dr. Thomas Rudlaff, Abteilungsleiter Rohbau Vorentwicklung, Herrn Karl-Heinz Blume, ehem. Abteilungsleiter Passive Sicherheit sowie die Fachdisziplinen Crashversuch, Materialcharakterisierung, Fügetechnik, Insassensensierungssysteme, Sicherheitssensorik und optische Vermessung. Ein ganz herzlicher Dank gilt meinen Eltern und meiner Frau, welche mir stets motivierend zur Seite standen und mir den nötigen Freiraum schufen.

Sindelfingen, 09.12.2016

Jan-Mark Opelka

Inhaltsverzeichnis

1			Einleitung	1
2			Aufbau und Ziel der Arbeit	4
3			Stand des Wissens	9
	3.1	С	rash-Gesetze & Ratings	9
	3.2	С	rashaktive Rohbaustrukturen	11
	3.2	.1	Patentrecherche	11
	3.2	.2	Literaturrecherche	16
	3.3	Tł	neoretische Grundlagen pyrotechnischer Gasdruckerzeugung	18
	3.3	.1	Einteilung energetischer Materialien	18
	3.3	.2	Abbrandverhalten	20
	3.3	.3	Ermittlung simulationsrelevanter Eingangsgrößen	24
	3.4	Vi	rtuelle Absicherung von PRE-SAFE [®] Structures	25
	3.4	.1	Modellierung & Simulation von lasergeschweißten Verbindungen	27
	3.4	.2	Numerische Bewertung des Aktivierungsvorgangs	31
4			Theoretische Grundlagen crashaktiver Strukturen unter Axiallast	38
	4.1	W	irkprinzipien & Aktivierungsszenarien von PRE-SAFE [®] Structures	38
	4.2	A	nalytische Beschreibung	41
	4.2	.1	Maximalkraft	42
	4.2	.2	Mittlere Kraft	47
	4.3	Sz	zenarienbewertung	50
	4.4	Se	ensitivitätsanalyse der performancebeeinflussenden Parameter	59
	4.4	.1	Innendruck	60
	4.4	.2	Wandstärke	62
	4.4	.3	Werkstofffestigkeit	65
	4.4	.4	Volumenvergrößerung	68
	4.4	.5	Deformationsgeschwindigkeit	71
	4.4	.6	Fazit	74
5			Entwicklung Gesamtsystem crashaktive Bordkante	77
	5.1	Aı	nforderungen	77
	5.2	K	onzept crashaktive Bordkante	80
	5.3	Be	ewertung Energiespeicher zur Druckerzeugung	84
	5.3	.1	Gasgeneratorsysteme	85

	5.3.2	Systemvergleich	87
	5.4 S	ensorik & Aktivierungsstrategie	90
6		Virtuelle Absicherung PRE-SAFE® Structures – Methodenentwicklung	93
	6.1 A	nforderungen an die Simulationsmethodik	93
	6.1.1	Aktivierungsverhalten	93
	6.1.2	Verbindungstechnik	94
	6.2 V	orausberechnung des Aktivierungsverhaltens	98
	6.2.1	Vergleich bestehender Modellierungsmethoden	98
	6.2.2	Grundlagen der kinetischen Gastheorie	99
	6.2.3	Corpuscular Particle Method	104
	6.2.4	Theoretische Modellbildung	106
	6.2.5	Berechnung Wärmeübertragungskoeffizient für Zone 1	111
	6.2.6	Berechnung Wärmeübertragungskoeffizient für Zone 2	127
	6.2.7	Iterativer Berechnungsprozess	131
	6.2.8	Wärmetransport innerhalb des generischen, crashaktiven Trägers	134
	6.2.9	Modellvalidierung & -bewertung	139
	6.3 V	ersagensprognose lasergeschweißter Kehl- & I-Nähte	148
	6.3.1	Entwicklungsprozess	148
	6.3.2	Selektion	149
	6.3.3	Versuch	155
	6.3.4	Charakterisierung	157
	6.3.5	Modellierung	168
	6.3.6	Kalibrierung	170
	6.3.7	Modellbewertung	178
7		Strukturbewertung crashaktive Bordkante	180
	7.1 A	ktivierungsverhalten	180
	7.2 C	rash-Bewertung Gesamtfahrzeugsimulation	184
	7.2.1	Frontalanprall	184
	7.2.2	Seitenanprall	186
8		Zusammenfassung & Ausblick	188
	8.1 F	azit crashaktive Strukturen unter Axiallast	188
	8.2 F	azit Methodenentwicklung zur Simulation von PRE-SAFE® Structures	189
	8.3 A	usblick & weiterführende Arbeiten	191
9		Literaturverzeichnis	194

10	Anhang	205
10.1	Abbildungsverzeichnis	205
10.2	Tabellenverzeichnis	212
10.3	Beispielhafte Darstellung auslegungsrelevanter Crash-Lastfälle	214
10.4	Simulationsergebnisse Shock Tube – CPM vs. ALE	216
10.5	Split Flip Disc-Versagensform elliptischer Profile	217
10.6	Abmaße Schweißproben	218
10.7	Bewertungskriterien Laser-Schweißnaht	221
10.8	Blendennanordnung Gasgenerator	223
10.9	Gauß'sches Fehlerintegral	224
10.10	Korrektur und Emissionsgrade CO ₂ und H ₂ O	225
10.1	I Materialkarten Laserschweißverbindung	228
10.12	2 Temperaturabhängige Korrekturglieder für Gasgemische	230
10.13	3ARAMIS-Messaufbau und –größen	232
10.14	Auswertekriterien Frontalanprall	234
10.1	5 Auswertekriterien Tür seitlicher Anprall	235
11	Lebenslauf	236

Verzeichnis der verwendeten Symbole und Abkürzungen

Lateinische Symbole

a_m	Mittlere Temperaturleitfähigkeit	m ² s ⁻¹
A_{80}	Bruchdehnung	%
A	Flächeninhalt; Koeffizient molare Wärmekapazität	m ² ; J mol ⁻¹ K ⁻¹
Ae	Blendenquerschnitt	m ²
A_{tank}	Tankfläche	m ²
$A_{T,PID}$	Mittlere Querschnittsfläche PID	m ²
$A_{V,CO2}$	Absorptionsgrad CO ₂	[-]
Av,G	Absorptionsgrad Gasgemisch	[-]
A _{V,H20}	Absorptionsgrad H ₂ O	[-]
b	Vieille-Konst.; Anbindebreite; Van-der-Waals Konst.	m s ⁻¹ ; m; m ³ mol ⁻¹
В	Koeffizient molare Wärmekapazität	J kg ⁻¹ K ⁻²
В	Empirische Korrelation Berechnung Absorptionsgrad	CO ₂ [-]
Bi	Biot-Zahl	[-]
BETA	Tragfähigkeitsverlust bei Versagensbeginn	[-]
Ce	Geschwindigkeit der elastischen Welle	m/s
C_p	Isobare Wärmekapazität	J kg ⁻¹ K ⁻¹
$C_{p,mol,m}$	Mittlere spezifische molare Wärmekapazität (isobar)	J mol ⁻¹ K ⁻¹
C_V	Isochore Wärmekapazität	J kg ⁻¹ K ⁻¹
$C_{\nu,m}$	Mittlere isochore Wärmekapazität	J kg ⁻¹ K ⁻¹
Cv,mol,m	Mittlere spezifische molare Wärmekapazität (isochor)	J mol ⁻¹ K ⁻¹
С	Koeffizient molare Wärmekapazität	J mol ¹ K ⁻³
C_C	Profilkonstante	[-]
C_S	Stefan-Boltzmann-Konstante	5,670*10 ⁻⁸ W m ⁻² K ⁻⁴
d	Durchmesser; Nahtdicke	m; m
d^*	Bezogener Blendendurchmesser Runddüsenfeld	[-]
d_h	Hydraulischer Durchmesser	m
D	Cowper-Symonds Konstante	[-]
D_B	Blenden-Durchmesser	m
D_B '	Korrigierter Blenden-Durchmesser	m
е	Spezifische innere Energie	J kg⁻¹

e_{GG}	Anzahl Gasgenerator-PIDs	[-]
ers	Gaußsches Fehlerintegral	[-]
e_s	Schichtdicke	m
Ε	Energie; Elastizitätsmodul	J; MPa
EDOT2	Dynamische Dehnrate	S ⁻¹
E_h	Tangentenmodul	MPa
Espin	Rotationsenergie Molekül	J
ET	Steifigkeit Tangentialverschiebung	MPa m ⁻¹
E_{tank}	Energieverlust Tank durch Konvektion	J
f	Frequenz; Wahrscheinlichkeitsfunktion	s ⁻¹ ; [-]
$f_{p,CO2}$	Spezifischer Druckkorrekturfaktor CO2	[-]
fp,H2O	Spezifischer Druckkorrekturfaktor H2O	[-]
F_B	Maximale Beullast, dynamisch	Ν
$F_{B,p}$	Maximale Beullast bei zusätzlich wirkendem Innendruck, dyna	misch N
F_{in}	Traglast des plastischen Gelenks	Ν
Fout	Traglast des nicht plastifizierten Rest-Umfangs	Ν
F_{kr}	Kritische Knicklast	Ν
$F_{kr,p}$	Kritische Knicklast bei zusätzlich wirkendem Innendruck	Ν
F_{max}	Maximalkraft	Ν
$F_{m,d}$	Mittlere Kraft, dynamisch	Ν
$F_{m,d,g}$	Mittlere Kraft inkl. Innendruck, dynamisch	Ν
$F_{m,s}$	Mittlere Kraft, statisch	Ν
F_t	Maximale Traglast des elliptischen Profils	Ν
$F_{t,p}$	Maximale Traglast des elliptischen Profils unter Innendruck	Ν
G	empirischer Faktor Runddüsenfeld	[-]
GCTEN	Flächeninhalt unter Spannungs-Verformungskurve (Zug)	m²
GCSHR	Flächeninhalt unter Spannungs-Verformungskurve (Schub)	m ²
h	Einbrandtiefe; Höhe Hexaeder	m; m
h^*	Bezogener Wandabstand	[-]
$h_{I,WL}$	Wärmeübergangskoeffizient für instationäre Abkühlung in Phas	se IW m ⁻² K ⁻¹
h _{II,Kon}	Konvektiver Wärmeübergangskoeffizient Zone II	W m ⁻² K ⁻¹
h_{Pr}	konvektiver Wärmeübergangskoeffizient Prallströmung	W m ⁻² K ⁻¹
h_S	Wärmeübergangskoeffizient Gasstrahlung	W m ⁻² K ⁻¹
Н	Plastischer Gelenkschenkel	m

H_B	Blendenabstand zur Wand	m
H_{GG}	Enthalpie Gasgenerator-Heißgas	J
i	Nummer Stützstelle	[-]
Ι	Flächen-Trägheitsmoment	m ⁴
$ISO_{\Delta \varepsilon G}$	Wert ISO-Linien	bar m
$J_{x,i}$	Molekülimpuls in x-Richtung	kg m s ⁻¹
k	Boltzmann Konstante; maximale Anzahl Stützstellen	1,381*10 ⁻²³ J K ⁻¹ ; [-]
Κ	Euler-Parameter	[-]
l_f	Mittlere freie Weglänge	m
1	Länge	m
L	Profillänge	m
Le	Effektive Profillänge	m
L_T	Blendenabstand Runddüsenfeld	m
L_x	Seitenlänge Einheitsvolumen (x)	m
L_y	Seitenlänge Einheitsvolumen (y)	m
L_z	Seitenlänge Einheitsvolumen (z)	m
ṁ	Massenstrom	kg s ⁻¹
$\dot{m_e}$	Massenstrom engster Stelle Gasgenerator-Blende	kg s ⁻¹
т	Anzahl Gaskomponenten	[-]
m_b	Biegemoment; Exponent der Biegespannung	Nm; [-]
m_c	Masse der pyrotechnischen Ladung	kg
m_G	Gasmasse	kg
m_{GG}	Gasmasse in Generatorbrennkammer	kg
m_i	Masse Molekül i	kg
m_m	Mittlere Molekülmasse	kg
m_n	Exponent der Normalspannung	[-]
m_t	Exponent der Schubspannung	[-]
m _{tank}	Gasmasse im Tank	kg
М	Molare Masse	kg mol ⁻¹
M_0	Molare Masse Ausgangszustand	kg mol ⁻¹
M_b	Maximal zulässiges Biegemoment	Ν
M_G	Molare Masse Gasgemisch	kg mol ⁻¹
M _{rr}	Moment um rr-Achse	Nm
MrrF	Maximal ertragbares Moment um rr-Achse	Nm

M _{ss}	Moment um ss-Achse	Nm
M_{ssF}	Maximal ertragbares Moment um ss-Achse	Nm
M _{tt}	Moment um tt-Achse	Nm
M_{ttF}	Maximal ertragbares Moment um tt-Achse	Nm
п	Laufvariable; Stoffmenge; Iterationsschritt	[-]; mol; [-]
n_G	Stoffmenge Gasgemisch	mol
Ν	Molekülanzahl	[-]
N_A	Avogadro-Konstante	6,022*10 ²³ mol ⁻¹
N_G	Teilchenanzahl Gasgemisch	[-]
Nrr	Normalkraft in Richtung rr	N
NrrF	Maximal ertragbare Normalkraft in Richtung rr	N
Nrs	Normalkraft in Richtung rs	N
NrsF	Maximal ertragbare Normalkraft in Richtung rs	N
N _{rt}	Normalkraft in Richtung rt	N
NrtF	Maximal ertragbare Normalkraft in Richtung rt	N
Nurdf	Nusselt-Zahl Runddüsenfeld	[-]
O_{PSS}	Oberfläche PRE-SAFE [®] Structure	m ²
OPT	Parameter zur Steuerung des Versagensmodells	[-]
р	Druck; Cowper-Symonds Konstante	MPa; [-]
p_0	Referenzdruck	MPa
p_{atm}	Umgebungsdruck	MPa
p_e	Druck an engster Stelle Gasgenerator-Blende	MPa
pco2	Partialdruck CO ₂	MPa
p_G	Gasdruck	MPa
$p_{G,m}$	Mittlerer Gasdruck	MPa
рн20	Partialdruck H ₂ O	MPa
p_{max}	Maximaldruck	MPa
<i>p</i> tank	Tankdruck	MPa
p_x	Druck mit Wirkrichtung x	MPa
p_y	Druck mit Wirkrichtung y	MPa
p_z	Druck mit Wirkrichtung z	MPa
Pr_m	Mittlere Prandl-Zahl	[-]
PWRS	Exponent Schubspannung	[-]
PWRT	Exponent Zugspannung	[-]

q	Laufzahl PID	[-]
\dot{Q}_{GW}	Wärmestrom Gas – Wand	kg m ² s ⁻³
r	Radius	m
r_m	Mittlerer Radius	m
R	Universelle Gaskonstante; Trägheitsradius	3,314 J mol ⁻¹ K ⁻¹ ; m
$R_{e,B}$	Reynolds-Zahl Runddüsenfeld	[-]
$R_{i,G}$	Individuelle Gaskonstante Gasgemisch	J kg ⁻¹ K ⁻¹
$R_{i,i}$	Individuelle Gaskonstante der Komponente i des Gasge	mischs J kg ⁻¹ K ⁻¹
R_m	Zugfestigkeit	MPa
$R_{p0,2}$	Ersatzstreckgrenze	MPa
S	Weg	m
Sgl	Gleichwertige Schichtdicke	m
S	Pulveroberfläche; maximal ertragbare Schubbeanspruch	nung m²; N
SDFAC	Skalierungsfaktor Spannung unter dynamischer Dehnrat	te [-]
SGFAC	Skalierungsfaktor Versagensenergie unter dynamischer	Dehnrate [-]
S_h	Länge plastifizierter Umfang in einem Quadranten des G	uerschnitts m
SHT_SL	Parameter zur Steuerung der Moden-Interaktion	[-]
SHRMAX	Maximale Schubspannung	MPa
SHRP	Parameter zur Skalierung des Schubspannungsplateaus	s [-]
t	Zeit; Wandstärke	s; m
t _{GG,e}	Ende Einströmvorgang Heißgasgemisch	S
t_0	Einströmbeginn Heißgasgemisch	S
t_1	Momentanwert Zugbeanspruchung	N
t_2	Momentanwert Schubbeanspruchung	Ν
Т	Temperatur; maximal ertragbare Zugbeanspruchung	K; N
T_{θ}	Ausgangstemperatur	К
TENMAX	Maximale Zugspannung	MPa
$T_{G,m}$	Mittlere Gastemperatur	К
T_{GG}	Gastemperatur Gasgenerator-Blende	К
T_p	Temperatur Potenzialströmung	К
T _{tank}	Tanktemperatur	К
T_W	Wandtemperatur	К
U	Innere Energie	J
$U_{T,PID}$	Mittlerer Umfang PID	m

v_i	Resultierende Geschwindigkeit Molekül i	m s⁻¹
\mathcal{V}_{0}	Anfängliche Deformationsgeschwindigkeit; spez. Volumen	m s ⁻¹ ; m ³ kg ⁻¹
Vrms	Quadratisch gemittelte Molekülgeschwindigkeit	m s⁻¹
$V_{x,i}$	Molekülgeschwindigkeit x-Richtung	m s⁻¹
$V_{y,i}$	Molekülgeschwindigkeit y-Richtung	m s ⁻¹
$V_{Z,i}$	Molekülgeschwindigkeit z-Richtung	m s⁻¹
V	(Einheits-) Volumen	m ³
V_i	Individuelles Molekülvolumen	m ³
V_{PSS}	Volumen PRE-SAFE [®] Structure	m ³
V_{tank}	Tankvolumen	m ³
\overline{V}	Mittleres Molekülvolumen	m ³
<i>॑</i>	Volumenänderung	m ³ s ⁻¹
WB'	Korrigierte Ausströmgeschwindigkeit Heißgasgemisch	m s⁻¹
WG	Ausströmgeschwindigkeit Heißgasgemisch	m s⁻¹
Wk	Translatorischer Anteil der spezifischen kinetischen Energie	J
W_{∞}	Maximale Geschwindigkeit der Potenzialströmung	m s⁻¹
W_k	Translatorischer Anteil der kinetischen Energie	J
W_p	Deformationsarbeit	J
W_{ν}	Volumenänderungsarbeit	J
x	Überströmlänge	m
Xmax	Maximaler Abstand Gasgenerator zu gegenüberliegendem T	rägerende m
$\chi_{\varDelta \varepsilon G}$	x-Wert Diagramm Korrekturglied	[-]
Х	Stoffmengenanteil	[-]
X_h	Länge des plastischen Gelenkschenkels	m
У	Wandabstand zu Trägerlängsachse	m
<i>y</i> *	Dimensionsloser Wandabstand	[-]
Z	Massenanteil der pyrotechnischen Ladung; Maximale Anzahl	l PIDs [-]; [-]
Z_{GG}	Anzahl Gasgenerator-Blenden	[-]

Griechische Symbole

α	Wärmeübergangskoeffizient; Biegewinkel; Ausflussziffer	W m ⁻² K ⁻¹ ; °; [-]
β	Vieille-Exponent; Verhältnis Schub- zu Zugspannung	[-]; [-]
δ	Dicke der Strömungsgrenzschicht	m

δ_T	Dicke der thermischen Grenzschicht	m
Δ	Tiefe des plastischen Gelenks	m
$\Delta \varepsilon_G$	Korrekturglied Emissionsgrad Gasgemisch	[-]
$\varDelta \varepsilon_W$	Korrekturglied Absorptionsgrad Wand	[-]
Δh_n	Konvergenzkriterium	W ² m ⁻⁴ K ⁻²
З	Dehnung	[-]
\mathcal{E}_{pl}	Plastische Dehnung	[-]
\mathcal{E}_B	Einschnürungskennzahl Lochblende	[-]
EC02	Emissionsgrad CO ₂	[-]
\mathcal{E}_G	Emissionsgrad Gasgemisch	[-]
EGW,CO2	Emissionsgrad CO2 bei Wandtemperatur	[-]
EGW,H2O	Emissionsgrad H2O bei Wandtemperatur	[-]
<i>ЕH</i> 2 <i>O</i>	Emissionsgrad H ₂ O	[-]
Ė	Dehnrate	S ⁻¹
$\dot{\varepsilon}_{eff}$	effektive Dehnrate	S ⁻¹
$\eta_{G,m}$	Mittlere dynamische Viskosität Heißgasgemisch	kg m ⁻¹ s ⁻¹
θ	Dimensionslose Temperatur	[-]
κ	Isentropenexponent	[-]
λ	Verhältnis aus Tangenten- und Elastizitätsmodul	[-]
$\lambda_{G,m}$	Mittlere Wärmeleitfähigkeit Gasgemisch	kg m s ⁻³ K ⁻¹
λ_s	Schlankheitsgrad	[-]
ρ	Dichte	kg m ⁻³
$ ho_c$	Dichte der pyrotechnischen Ladung	kg m ⁻³
$\rho_{G,m}$	Mittlere Dichte Heißgasgemisch	kg m ⁻³
σ	Zugspannung; Moleküldurchmesser	MPa; m
$\bar{\sigma}$	Mittlerer Moleküldurchmesser	m
σ_b	Biegespannung	MPa
σ_b^F	maximal zulässige Biegespannung	MPa
σ_{max}	Maximale Zugspannung	MPa
σ_n	Normalspannung	MPa
σ_n^F	maximal zulässige Normalspannung	MPa
σ_Y	Fließspannung	MPa
$\sigma_{Y,m}$	mittlere Fließspannung	MPa
σ_Y^d	dynamische Fließspannung	MPa

σ_{rr}	Normalspannung	MPa
τ	Schubspannung; empir. Korrelation Absorptionsgrad H ₂ O	MPa; [-]
$ au_{max}$	Maximale Schubspannung	MPa
$ au_s^F$	maximal zulässige Schubspannung	MPa
υ	spezifisches Volumen	m³ kg⁻¹
ν	Poisson-Zahl	[-]
VG,m	Mittlere kinematische Viskosität Gasgemisch	m ² s ⁻¹
ω_i	Massenanteil Gaskomponente	[-]

Abkürzungen

ΔA	Flächenelement
Abb.	Abbildung
ADAC	Allgemeiner Deutscher Automobil Club
Al	Aluminium
ALE	Arbitrary-Lagrangian-Eulerian
AZT	Allianz Zentrum für Technik
BR	Baureihe
Bsp.	Beispiel
CO	Kohlenstoffmonoxid
CO ₂	Kohlenstoffdioxid
CPM	Corpuscular Particle Method
CV	Control Volume
ECE	Economic Commission for Europe
EFG	Element Free Galerkin
ES	Edelstahl
ES-2	European Side Impact Dummy
ESF	Experimental Sicherheitsfahrzeug (Mercedes-Benz)
ESV	Enhanced Safety of Vehicles
FE	Finite Elemente
FMVSS	Federal Motor Vehicle Safety Standards
FPM	Finite Pointset Method
FSI	Fluid Structure Interaction
FVK	Faserverstärkter Kunststoff

GIDAS	German In-Depth Accident Study
GM	Grundmaterial
H ₂	Wasserstoff
HCL	Chlorwasserstoff
H ₂ O	Wasser
ICT	Fraunhofer Institut für Chemische Technologie
IIHS	Insurance Institute for Highway Safety
KTL	Kathodische Tauchlackierung
li.	links
MAG	Metall-Aktivgas
Mg	Magnesium
MB	Mercedes-Benz
MSG	Metallschutzgas
N ₂	Stickstoff
NCAP	New Car Assessment Programme
NHTSA	National Highway Traffic Safety Administration
PID	Property Identity
Pkw	Personenkraftwagen
PSS	PRE-SAFE [®] Structure
re.	rechts
RDF	Runddüsenfeld
SAP	Seitenaufprallträger
SFD	Split Flip Disc
SG	Schweißgut
Si	Silizium
SPH	Smoothed Particle Hydrodynamics
Tab.	Tabelle
UNECE	United Nations Economic Commission for Europe
UP	Uniform Pressure
WEZ	Wärmeeinflusszone
WorldSID	Worldwide harmonized Side Impact Dummy
WÜK	Wärmeübergangskoeffizient
ZE	Zentraleinheit