Hybrid Aeroacoustic Methods for Broadband Noise Calculation

Hybride aeroakustische Verfahren zur Berechnung von Breitbandlärm

Der Technischen Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg

zur Erlangung des Doktorgrades Dr.-Ing.

> vorgelegt von Christoph L. Scheit aus Kirn

Als Dissertation genehmigt von der Technischen Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg

Tag der mündlichen Prüfung: 22.02.2016

Vorsitzende des Promotionsorgans: Prof. Dr. Peter Greil

Gutachter: Prof. Dr.-Ing. habil. Stefan Becker

Prof. Dr.-Ing. habil. Manfred Kaltenbacher

Schriftenreihe des Lehrstuhls für Prozessmaschinen und Anlagentechnik

Band 30

Christoph Scheit

Hybrid Aeroacoustic Methods for Broadband Noise Calculation

Hybride aeroakustische Verfahren zur Berechnung von Breitbandlärm

D 29 (Diss. Universität Erlangen-Nürnberg)

Shaker Verlag Aachen 2016

Bibliographic information published by the Deutsche Nationalbibliothek The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available in the Internet at http://dnb.d-nb.de.

Zugl.: Erlangen-Nürnberg, Univ., Diss., 2016

Copyright Shaker Verlag 2016
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the publishers.

Printed in Germany.

ISBN 978-3-8440-4806-3 ISSN 1614-3906

Shaker Verlag GmbH • P.O. BOX 101818 • D-52018 Aachen Phone: 0049/2407/9596-0 • Telefax: 0049/2407/9596-9

Internet: www.shaker.de • e-mail: info@shaker.de

Vorwort

Die hier vorliegende Arbeit ist in einem Zeitraum von gut fünf Jahren am Lehrstuhl für Prozessmaschinen und Anlagentechnik unter der Leitung von Professor Dr. Schlücker entstanden. Diese Arbeit wäre ohne die große Unterstützung aus meinem privaten und beruflichen Umfeld nicht möglich gewesen. Im Folgenden möchte ich mich dafür herzlichst bei Allen bedanken.

Zunächst gebührt mein großer Dank Herrn Prof. Dr.-Ing. habil. Stefan Becker, der mich und meine Arbeit über viele Jahre unterstützt hat. Angefangen hat unsere langjährige Zusammenarbeit am Lehrstuhl für Strömungsmechanik, damals war ich noch Student in seiner sich im Aufbau befindenden Forschungsgruppe Aeroakustik. Er war es auch, der mich während meiner Zeit als Promovierender betreut hat, und mit dem ich nicht nur fachliche Dinge besprechen konnte. Bedanken möchte ich mich auch dafür, dass es mir stets möglich war, Promotion und Familie miteinander zu vereinbaren.

Ebenso gilt mein Dank Herrn Prof. Dr.-Ing. Manfred Kaltenbacher, der das Koreferat übernommen hat. In zahlreichen Projektreffen hatte Herr Prof. Dr.-Ing. Manfred Kaltenbacher stets ein offenes Ohr für Probleme, und Zeit, offene Fragen zu diskutieren.

Herr Prof. Dr. Eberhard Schlücker hat es mir ermöglicht, an seinem Institut als wissenschaftlicher Mitarbeiter in der Gruppe von Prof. Dr.-Ing. Stefan Becker einen Neustart zu wagen. Dafür, und für seine offene, verständnisvolle Art möchte ich mich an dieser Stelle bedanken.

Des Weiteren möchte ich mich bei meinen Kollegen bedanken, mit denen ich mir über viele Jahre, teilweise schon am LSTM, das Büro geteilt habe. Namentlich Dr. Stefan Kniesburges, Dr. Stefan Müller, Thomas Uffinger, Katrin Nusser und Andreas Rentz. Den Austausch mit Euch, ob fachlicher Natur oder zu privaten Themen, habe ich stets als Bereicherung empfunden. Danke für diese gute Zeit.

Meine Kollegen vom LSE bzw. der TU Wien, Jens Grabinger und Dr. Andi Hüppe, haben mir mit Ihrer Unterstützung bei der Simulation mit CFS++ sehr viel geholfen. Ich zähle beide schon lange zu meinen Kollegen und bin sehr dankbar für Ihre Unterstützung, die die Akustik-Rechnungen möglich gemacht haben.

Ein großer Dank gilt allen Mitgliedern unseres Forschungsbereiches für die jahrelange gute Zusammenarbeit und unser freunschaftliches Miteinander. Nochmals danken möchte ich in diesem Zusammenhang Claus Bakeberg, Stefan Müller und Matthias Springer, die mich bei der Durchführung meiner Akustik-Messungen tatkräftig unterstützt haben.

Ebenfalls ein Dankeschön gilt Dr. Frank Schäfer und Dr. Irfan Ali, die mich vor vielen Jahren mit FASTEST-3D vertraut gemacht haben. Beide haben mich

in meinen Anfängen als wissenschaftlicher Mitarbeiter, damals noch am LSTM, sehr unterstützt.

In den ganzen Jahren durfte ich mit vielen Studenten zusammenarbeiten, die ich über die vielen Jahre hinweg betreut habe. Sie haben mit mir gemeinsam Themen bearbeitet, für die mir alleine die Zeit (nicht aber das Interesse) fehlte, oder mich bei meinen Untersuchungen im Rahmen dieser Arbeit unterstützt. Namentlich sind dies Felix Krey, Daniela Anderl, Rao Muhammad Masood, Christian Schöner, Till Heinemann, Johannes Weber, Alexander Hofmann, Ali Esmaeili, Henrik Barthelme, Katrin Nusser, Harish Abubaker und Benjamin Broese. Euch allen meinen herzlichen Dank!

Ein besonderer Dank auch dem ganzen Team vom RRZE, die sowohl als Projektpartner als auch in technischen Fragen immer gerne und kompetent geholfen haben. Vielen Dank an Thomas Zeiser, Georg Hager, und Prof. Dr. Gerhard Wellein für die Zusammenarbeit im Rahmen der KONWIHR Projekte.

Diese Arbeit hat sich über einen langen Zeitraum erstreckt. Dabei wurde meine Arbeit von verschiedenen Stiftungen finanziell unterstützt. Dies waren die Universität Bayern e.V., KONWIHR und die Bayerische Forschungsstiftung BFS.

Ein ganz besonderer Dank gilt meinen Eltern, ohne die ich wohl nicht diese Worte schreiben würde. Sie haben mir diese Laufbahn ermöglicht und mich viele Jahre lang in Schule, Ausbildung und Studium bis heute immer unterstützt und mir in schwierigen Situationen mit Rat und Tat zur Seite gestanden. Dafür möchte ich mich auch bei meinem Bruder Oliver und meinen Großeltern bedanken.

Mein größter Dank gilt meiner Familie: meiner Frau Elsy und meinen beiden Kindern Oscar und Sara. Sie waren mir stets eine große Motivation, und Elsy hat mich in schwierigen Phasen immer wieder aufgebaut. Vielen Dank für Euer Verständnis, wenn ich nicht da war oder in Gedanken bei meiner Arbeit. Vielen Dank für Eure Liebe und Eure Unterstützung in der ganzen Zeit.

CONTENTS

Contents

No	omen	clature			VII
Al	ostrac	et			XIII
Zι	ısamı	menfassung			XV
1	Intr	oduction			1
	1.1	Problem Definition			1
	1.2	Review of Current Research			3
		1.2.1 Historical Review of Computational Aeroacou			3
		1.2.2 Research on Forward-Facing Step Flow			6
	1.3	Objective of this Thesis			10
	1.4	Outline			11
2	Gov	erning Equations			15
	2.1	Governing Equations of Fluid Mechanics			16
		2.1.1 Continuity Equation			16
		2.1.2 Momentum Equation			16
		2.1.3 Energy Equation			17
	2.2	Aeroacoustic Propagation Equations			19
		2.2.1 Homogeneous Wave Equation			19
		2.2.2 Lighthill's Acoustic Analogy			20
		2.2.3 Vortex Sound			24
		2.2.4 Ffowcs Williams and Hawkings			25
		2.2.5 Acoustic Perturbation Equations			32
3	Disc	retization and Models for Hybrid Simulation Approx	ach		39
	3.1	Finite Volume Method for Incompressible Flows			40
		3.1.1 Integral Form of Governing Equations			40
		3.1.2 Discretization			42

IV CONTENTS

	3.2	Turbul	ence Modelling	50	
		3.2.1	Large Eddy Simulation	52	
	3.3	Finite	Element Method for Aeroacoustic Equations	62	
		3.3.1	Strong and Weak Form of the PDE	62	
		3.3.2	Discretization of the Weak Form	64	
		3.3.3	Finite Element Formulation of the Source Terms	68	
	3.4	Hybrid	Scheme	74	
4	Veri		and Validation of Hybrid CAA Approach	77	
	4.1	-	-Green Problem	78	
		4.1.1	Analytical Solution for Acoustic Source Terms	78	
		4.1.2	Flow Configuration	79	
		4.1.3	Comparison of Source Term Formulations	79	
	4.2	Lamin	ar Flow Around a Circular Cylinder	82	
		4.2.1	Simulation Parameters	84	
		4.2.2	Flow Field	86	
		4.2.3	Acoustic Simulation	95	
5	Opt	imizatio	on for High-Performance Computing	109	
	5.1	Tool-Guided Assessment of Single-Core Performance and Scal-			
		ing Pro	operties	110	
		5.1.1	Test Environment and Benchmark Cases	111	
		5.1.2	Analysis of Single-Core Performance	112	
		5.1.3	Survey of Communication Pattern	115	
	5.2	Code (Optimization	118	
		5.2.1	Single-Core Optimizations	118	
		5.2.2	Enhancing Communication Performance	121	
		5.2.3	Verification	124	
	5.3	Perfor	mance Results	125	
		5.3.1	Performance Results on SuperMUC	125	
6	Flov		coustics of a Forward-Facing Step	131	
	6.1	Simula	ation Setup and Configuration	132	
		6.1.1	Configuration for DNS	132	
		6.1.2	Aeroacoustic Simulation Approach	136	
	6.2	Topolo	ogy and Statistical Description of the Flow Field	141	
		6.2.1	Averaged Flow Field	141	
		6.2.2	Unsteady Flow Field	147	
	6.3	Aeroac	coustic Source Terms and Sound Propagation	157	
		6.3.1	Acoustic Measurements	158	
		6.3.2	Acoustic Source Region	160	

CONTENTS V

		6.3.3 Sound Field	164	
7	Disci	retization and Modelling Effects on Hybrid Aeroacoustics	169	
	7.1	Simulation Setup	169	
	7.2	Grid Resolution	173	
	7.3	Subgrid-Scale Models	180	
	7.4	Flux Discretization	184	
	7.5	Acoustic Source Term	190	
	7.6	Source Term Discretization in Lighthill's Acoustic Analogy	191	
8	Conc	clusions and Future Work	195	
	8.1	DNS and Measurements of Forward-Facing Step Flow	196	
	8.2	Factors for Hybrid Aeroacoustics	197	
	8.2.1 Discretization of Convective Flux			
		8.2.2 Choice of Acoustic Source Terms and Their Discretization	198	
		8.2.3 Subgrid Scale Model and Mesh Quality	200	
	8.3	Future Work	201	
Ap	pendi	ices		
Appendix A Mach Number Scaling for APE				
Appendix B Turbulent Channel Flow 2				