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Abstract 

Multi-arc plasma spraying systems promise several advantages in comparison to the 
conventional single-arc systems. However, some of the underlying fundamentals of the multi-

arc plasma spraying are still poorly understood. Intensive numerical research which has been 

conducted to identify the fundamentals of conventional single-arc plasma spraying has not 
been applied to multi-arc plasma spraying process yet. A comprehensive numerical research 

to understand the behavior of the plasma columns in the plasma torch as well as that of 

powder particles in the plasma jet in multi-arc plasma spraying were the subjects of this thesis.  
 

In this study, the focus was set to the influence of relevant numerical aspects and model 
assumptions on the numerical results. The models which are necessary to analyze the plasma 

and particle behavior in multi-arc spraying systems have been subjected to intensive 

verification with respect to the underlying model assumptions and numerical aspects. 
Subsequently, the prediction powers of the models have been evaluated by comparing the 

results of the developed models with the results of advanced diagnostic systems. General 

characteristics of plasma columns within and outside of the spraying system as well as particle 
behaviors in the plasma jet have been analyzed using developed numerical models. 

Furthermore, the possible application areas of the developed models have been introduced 
exemplarily. 

 

Good accuracy of the models regarding the predicted plasma jet characteristics and particle 
temperatures and velocities is evident. Due to the stable behavior of the plasma columns, 

modeling of multi-arc spraying systems promises accurate description of the process and a 

high predicting power allowing a successful deployment of the developed models with the 
purpose of designing and optimization of process and injection parameters.  
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Abstract (deutsch) 

Das Mehr-Kathoden-Plasmaspritzen verspricht mehrere Vorteile im Vergleich zum 
herkömmlichen Ein-Kathode-Plasmaspritzen. Allerdings sind die Grundlagen dieses 

Prozesses noch wenig erforscht. Intensive numerische Untersuchungen, die zu einem besseren 

Verständnis der Grundlagen des konventionellen Ein-Kathode-Plasmaspritzens geführt 
haben, beziehen sich noch nicht auf das Multi-Elektroden-Plasmaspritzen. Daher war die 

Entwicklung der numerischen Modelle, die die physikalischen Vorgänge im Plasmagenerator 

sowie das Verhalten der Pulverpartikel im Mehr-Kathoden-Plasmaspritzen beschreiben, 
Gegenstand der Arbeiten in dieser Dissertation.  

 
In dieser Studie wurde der Fokus auf den Einfluss der relevanten numerischen Aspekte und 

Modellannahmen auf die numerischen Ergebnisse gelegt. Die Modelle, die notwendig sind, 

um das Plasma- und das Partikelverhalten im Mehr-Kathoden-Plasmaspritzen zu analysieren, 
wurden in Bezug auf die zugrunde liegenden Modellannahmen und numerischen Aspekte 

einer intensiven Verifikation unterzogen. Anschließend wurde die Vorhersagefähigkeit der 

Modelle auf Basis eines umfangreichen Vergleichs zwischen den Ergebnissen der entwickelten 
Modelle und der experimentellen Diagnosesysteme bewertet. Die Eigenschaften der 

Plasmasäulen innerhalb und außerhalb des Plasmagenerators sowie das Partikelverhalten im 
Plasmastrahl wurden mittels entwickelter Modelle analysiert. Darüber hinaus wurden die 

möglichen Anwendungsbereiche der entwickelten Modelle exemplarisch vorgestellt. 

 
Die hohe Genauigkeit der numerischen Modelle in Bezug auf die berechneten 

Plasmastrahleigenschaften, Partikeltemperaturen und -geschwindigkeiten ist evident. 

Aufgrund des stabilen Verhaltens der Plasmasäulen, verspricht die Modellierung vom Mehr-
Kathoden-Plasmaspritzen eine genaue Beschreibung des Prozesses und eine hohe 

Vorhersagefähigkeit. Folglich ist ein erfolgreicher Einsatz der entwickelten Modelle mit dem 
Ziel der Entwicklung und Optimierung von Prozess- und Injektionsparametern zu erwarten.
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