VEREINFACHTE MODELLE ZUR SCHWEISSVERZUGSBERECHNUNG

Von der Fakultät für Maschinenbau, Elektrotechnik und Wirtschaftsingenieurwesen der Brandenburgischen Technischen Universität Cottbus-Senftenberg zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

genehmigte Dissertation vorgelegt von

Diplom-Ingenieur Christoph Stapelfeld

geboren am 04.05.1982 in Zittau, Deutschland

Vorsitzende: Gutachter: Gutachter: Univ.-Prof. Dr.-Ing. Sabine Weiß Univ.-Prof. Dr.-Ing. habil. Vesselin Michailov Univ.-Prof. Dr.-Ing. Prof. h. c. Klaus Dilger

Tag der mündlichen Prüfung: 08.07.2015

Berichte des Lehrstuhls Füge- und Schweißtechnik der BTU Cottbus-Senftenberg

Band 10

Christoph Stapelfeld

Vereinfachte Modelle zur Schweißverzugsberechnung

Shaker Verlag Aachen 2016

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: Cottbus-Senftenberg, BTU, Diss., 2015

Copyright Shaker Verlag 2016 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8440-4142-2 ISSN 1867-4887

Shaker Verlag GmbH • Postfach 101818 • 52018 Aachen Telefon: 02407 / 95 96 - 0 • Telefax: 02407 / 95 96 - 9 Internet: www.shaker.de • E-Mail: info@shaker.de

Danksagung

Mein Dank gilt vor allem meinem Doktorvater Herrn Univ.-Prof. Dr.-Ing. habil. Vesselin Georgiev Michailov, Leiter des Lehrstuhls Füge- und Schweißtechnik an der BTU Cottbus-Senftenberg. Als Urheber der Idee des analytisch numerischen Hybridmodells zur Schweißverzugsberechnung, brachte er meine Arbeit stets mit konstruktiver Kritik und neuen Impulsen voran. Ebenso danke ich Herrn Dr.-Ing. Nikolay Doynov für die beharrliche Vermittlung seiner umfangreichen Kenntnisse und Erfahrungen auf dem Gebiet der numerischen Simulation und der wissenschaftlichen Arbeit im Generellen.

Herrn Univ.-Prof. Dr.-Ing. Prof. h. c. Klaus Dilger vom Institut für Füge- und Schweißtechnik der TU Braunschweig danke ich für das Interesse an meiner Arbeit und für die Funktion als zweiter Gutachter. Frau Univ.-Prof. Dr.-Ing. Sabine Weiß vom Lehrstuhl Metallkunde und Werkstofftechnik der BTU Cottbus-Senftenberg danke ich für die Übernahme des Vorsitzes des Promotionsausschusses.

Bedanken möchte ich mich des Weiteren bei den Mitgliedern des Ausschusses, der das Forschungsvorhaben mit dem Titel "Erweiterung eines analytisch numerischen Hybridmodells für die Verzugssimulation von Großstrukturen" begleitet hat. Durch die engagierte Mitarbeit von allen Beteiligten wurde maßgeblich zur erfolgreichen Umsetzung des Projekts und somit auch zum gelingen meiner Dissertation, die in dessen Rahmen entstand, beigetragen. Einen besonderen Dank möchte ich Herrn Paul Bernardy aussprechen, der sowohl die umfangreichen experimentellen Untersuchungen bei der Mayer Werft GmbH ermöglichte, als auch die Messdaten der Decksektion mir zur Verfügung stellte.

Mein Dank gilt ebenfalls allen Mitarbeitern des Lehrstuhls Füge- und Schweißtechnik der BTU Cottbus-Senftenberg für die angenehme und gute Zusammenarbeit sowie für das tatkräftige Mitwirken an meiner Arbeit.

Von ganzem Herzen bedanke ich mich bei meinem engen Freundeskreis und meiner lieben Familie für ihre bedingungslose Unterstützung und den mir gebotenen Rückhalt.

Zusammenfassung

Dem Fügen mittels Schweißen kommt in vielen Industriezweigen eine zentrale Bedeutung zu. Durch die ungleichmäßige Erwärmung der Schweißverbindung kommt es jedoch zu unerwünschten Verformungen, die durch kostenintensive Nachbehandlungen beseitigt werden müssen. Ist der bleibende Schweißverzug bereits in einem frühen Stadium des Produktentwicklungszyklus bekannt, können geeignete Gegenmaßnahmen ergriffen oder Nachbehandlungen bereits in der Produktplanung festgelegt werden.

Das Kernziel dieser Arbeit ist die Entwicklung und Umsetzung eines gekoppelten analytisch numerischen Hybridmodells für die Schweißverzugsberechnung von Großstrukturen. Die Basis hierfür liefert das Schrumpfkraftmodell, welches um moderne Schweißverfahren und neue Werkstoffe erweitert wird. Sowohl experimentell als auch mittels numerischer Analysen wird die Instabilität dünnwandiger Strukturen untersucht und eine mögliche Erfassung im Schrumpfkraftmodell vorgeschlagen. Durch die analytisch numerische Kopplung stellt auch die Berechnung der Verzüge, hervorgerufen durch krummlinig wandernde Wärmequellen keine Hürde mehr dar und wird implementiert.

Um die Anwendung des Hybridmodells zu vereinfachen, wird ein Programm entwickelt, welches die umfangreiche mathematische Vorgehensweise des Schrumpfkraftmodells beinhaltet und aufgrund der Geometrie der Schweißverbindung, des Werkstoffs und der Schweißparameter die mechanischen Lasten berechnet. Die Verifizierung der Software, des Kopplungsalgorithmus sowie die Untersuchung der Stabilität und Sensibilität des Hybridmodells erfolgt an Stumpfstoßverbindungen.

Abschließend wird das Modell an unterschiedlich komplexen Schweißkonstruktionen angewandt und die berechneten Schweißverzüge mit experimentellen Messungen verglichen. Eingangs werden einfache I- und T-Stoßverbindungen betrachtet. Es folgt die Verzugsberechnung eines Demonstrators aus dem Schiffbau mit 8 Schweißnähten sowie einer gesamten Decksektion mit ca. 90 Nähten, wobei verschiedene Elemente auf eine Grundplatte von 20×16 Metern gefügt werden.

Abstract

Joining by means of welding has a vital importance in many sectors of industry. However, the uneven heating of the welded structure results in unwanted distortions, which has to be removed by cost-intensive after treatments. Knowing the welding distortions in an early stage of the product development cycle enables taking countermeasures or define after treatments, already in the product planning.

The aim of this research study is the development and implementation of an analytic numerical hybrid model for the distortion calculation of large welded structures. The basis of the hybrid model is the analytical shrinkage force model, which is upgraded for modern welding processes and new materials. By means of experimental as well as numerical investigations, the instability of thin walled structures during welding is reviewed and a possibility for capturing is proposed. The linking of the analytical and the numerical method opens up the possibility for calculating the distortions caused by curved trajectories.

To simplify the application of the hybrid model, a software will be programmed, including the complex mathematical approach of the shrinkage force model. It determines the mechanical loads, depending on the geometry of the welded structure, material data and weld parameters. The verification of the program as well as the coupling procedure is done on butt joints. The same welded structures are used for the investigation of the stability and the sensibility of the hybrid model afterwards.

Finally the hybrid model will be applied to welded structures of different complexity and the results will be compared with experimental measurements. At the beginning butt and T-joints are determined, followed by the distortion calculation of a evaluation model made up of 8 welds. At the end an entire section of a ship deck, whereupon different elements are assembled by about 90 welds on a 20×16 meter large ground plate, is estimated.

Inhaltsverzeichnis

1	Ein	leitung		
2	Sta	nd der	Wissenschaft	
	2.1	Arten	von Schweißverformungen	
	2.2	Entste	ehung von Wärmedehnungen und Eigenspannungen	
		2.2.1	Die Temperaturabhängigkeit der Werkstoffkennwerte	
			2.2.1.1 Thermophysikalische Werkstoffkennwerte	
			2.2.1.2 Thermomechanische Werkstoffkennwerte	
			2.2.1.3 Wärmeaustausch mit der Umgebung	1
		2.2.2	Das Temperaturfeld beim Schweißen	1
		2.2.3	Entstehung von Eigenspannungen am Beispiel des Einstab-	
			modells]
		2.2.4	Entstehung von plastischen Dehnungen am Beispiel des Drei-	
			stabmodells]
	2.3	Metho	oden und Modelle zur Schweißverzugsberechnung	1
		2.3.1	Thermomechanische Finite-Elemente-Simulation	1
		2.3.2	Das Maximaltemperaturmodell	2
			2.3.2.1 Berechnung der Temperaturen	2
			2.3.2.2 Übertragung der Maximaltemperaturen	3
	2.3.3 Vereinfachung der Berechnung durch Reduz		Vereinfachung der Berechnung durch Reduzierung des Bau-	
	teils		teils	ŝ
			2.3.3.1 Das Modell der inhärenten Dehnungen nach Ueda	3
			2.3.3.2 Das Lokal-Global-Modell	3
		2.3.4	Das Schrumpfkraftmodell	4
			2.3.4.1 Annahmen und Idealisierungen	4
			2.3.4.2 Das empirische Schrumpfkraftmodell und verwand-	
			te Verfahren	4
			2.3.4.3 Das Schrumpfkraftmodell nach Nikolaev	4
			2.3.4.4 Das Schrumpfkraftmodell nach Okerblom	5

		2.3.4.5 Das Schrumpfkraftmodell nach Kuzminov	52		
		2.3.5 Das Hybridschrumpfkraftmodell	81		
	2.4	Zusammenfassung - Stand der Wissenschaft $\ \ldots \ \ldots \ \ldots \ \ldots$	82		
3	Das	Global-Lokal-Global-Modell	87		
	3.1	Ermittlung der Ersatzsteifigkeiten	88		
	3.2	Übertragung der Ersatzsteifigkeiten	91		
	3.3	Zusammenfassung - Global-Lokal-Global-Modell	94		
4	Erweiterung des Schrumpfkraftmodells				
	4.1	Experimentelle Untersuchungen	96		
	4.2	Numerische Untersuchungen mittels der Finite-Elemente-Methode	99		
	4.3	Erfassung moderner Schweißverfahren und neuer Werkstoffe $\ $. $\ $.	101		
	4.4	Erfassung der Instabilität dünnwandiger Strukturen	109		
		4.4.1 Experimentelle Ergebnisse der Instabilitätsuntersuchungen	110		
		4.4.2 Ergebnisse kalibrierter thermomechanischer Simulationen an			
		dünnwandigen Strukturen	113		
		4.4.3 Erfassung des instabilen Verhaltens dünnwandiger Struktu-			
		ren im Schrumpfkraftmodell	120		
	4.5	Zusammenfassung - Erweiterung des Schrumpfkraftmodells	122		
5	Erw	eiterung des Hybridmodells um krummlinige Trajektorien	125		
	5.1	Das Temperaturfeld von sich auf Kreisbahnen bewegenden Wärme-			
		quellen	126		
	5.2	Analytische Maximaltemperaturberechnung krummliniger Trajek-			
		torien	127		
	5.3	Kriterium zur Berechnung der plastischen Dehnungen gemäß dem			
		vorhandenen Schrumpfkraftmodell	135		
	5.4	Fehlerbetrachtung zur Berechnung krummliniger Trajektorien mit			
		dem Schrumpfkraftmodell	139		
	5.5	Ubertragung der Dehnungen auf die gekrümmte Trajektorie im FE-			
		Modell	145		
	5.6	Zusammenfassung - Erweiterung des gekoppelten Hybridmodells	1.40		
		um krummlinige Trajektorien	140		
6	Um	setzung des Hybridschrumpfkraftmodells in einer Software	149		
	6.1	Software zur Schrumpfkraftberechnung	149		
	6.2	Kopplung mit kommerzieller FE-Software	153		
		6.2.1 Die möglichen Kopplungsarten	153		

		6.2.2 Realisierung der Kopplung mittels linearer Dehnungen	155	
		6.2.3 Verifizierung der Kopplung mittels elastischer Dehnungen .	158	
		6.2.4 Sensibilität und Stabilität des gekoppelten Hybridmodells .	163	
	6.3	Zusammenfassung - Umsetzung des Hybridschrumpfkraftmodells in		
		einer Software	167	
7	Anv	vendungsbeispiele	169	
	7.1	Elementare Schweißverbindungen	169	
	7.2	Komplexe Schweißkonstruktionen	174	
	7.3	Zusammenfassung - Anwendungsbeispiele	191	
8	8 Zusammenfassung			
Та	abelle	enverzeichnis	197	
Α	Abbildungsverzeichnis			
Li	Literaturverzeichnis 2			
Ei	Eigene Veröffentlichungen 21			

Formelzeichen

α	[1/K]	Wärmeausdehnungskoeffizient
$\alpha/c\rho$	$[\mathrm{cm}^3/\mathrm{J}]$	Volumenausdehnungszahl
α_0	$[J/m^2 sK]$	Wärmeübergangszahl bei Konvektion und Wärme-
		strahlung
α_K	$[J/m^2 sK]$	Wärmeübergangszahl bei Konvektion
α_r	$[J/m^2 sK]$	Wärmeübergangszahl bei Wärmestrahlung
α_s	[g/Ah]	Abschmelzleistung
β_k	[-]	Einspanngrad
χ	$[1/\mathrm{mm}^2]$	Charakteristischer Parameter für den Wärmeübergang
δ	[mm]	Plattendicke
ε	[-]	Absolute Dehnungen, Emissionszahl, Schwärzegrad
ε_i	[-]	Inhärente Dehnungen
ε_{Kr}	[-]	Kriechdehnung
ε_{el}	[-]	Elastische Dehnungen
ε_F	[-]	Dehnung bei Fließbeginn
ε_{Ph}	[-]	Dehnungen verursacht durch Phasenumwandlungen
ε_{pl}	[-]	Plastische Dehnungen
ε_{th}	[-]	Thermische Dehnung
φ	[rad]	Winkel
η	[-]	Schweißwirkungsgrad
η_t	[-]	Thermischer Wirkungsgrad
η_p	[-]	Erfassung der Verlustwärme und der zeitlich versetzt
		wirkenden Wärme
η_0	[-]	Gesamtwirkungsgrad bei der Erwärmung der entfestig-
		ten Zone
γ	[-]	Euler-Mascheroni-Konstante
λ	[J/msK]	Wärmeleitfähigkeit
ν	[-]	Querkontraktionszahl

ν_x	$[mm^2]$	Schrumpfvolumen pro Länge in Richtung der Schweiß-
		naht
ν_y	$[mm^2]$	Schrumpfvolumen pro Länge in Querrichtung zur
		$\operatorname{Schweißnaht}$
ρ	$[m g/cm^3]$	Dichte
σ	$[N/mm^2]$	Bestehende Spannung zwischen zwei Spannelementen
σ_E	$[N/mm^2]$	Eigenspannung
σ_F	$[N/mm^2]$	Fließgrenze, Fließgrenzspannung
σ_T	$[N/mm^2]$	Spannungen, hervorgerufen durch thermische Belas-
		tung
v	[mm]	Länge eines Kreisbogens
ω	[rad/s]	Winkelgeschwindigkeit
θ	$[\mathrm{kal/cm^3}]$	Proportionalitätsfaktor zwischen Streckenenergie und
		Nahtquerschnittsfläche
ξ_y	$[\mathrm{cm}^3/\mathrm{J}]$	Zusammenfassung der Einflussfaktoren auf das Quer-
U		schrumpfvolumen
ψ_0	[-]	Verhältnis von Tiefe zur Breite der Zone ohne elastische
		Eigenschaft
a	$[\mathrm{mm}^2/\mathrm{s}]$	Temperaturleitzahl
a_P	[-]	Anteil der Punktquelle an der effektiven Leistung
A	$[\mathrm{cm}^2]$	Querschnittsfläche
A^*	$[\mathrm{cm}^2]$	Bezogene Fläche
A_1	[-]	Erfassung des Wärmeaustauschs beim Grenzfall der Li-
		nienquelle in einer dünnen Platte
A_2	[-]	Erfassung des Wärmeaustauschs und der Plattendicke
A_3	[-]	Erfassung des Wärmeaustauschs, der Plattendicke und
		der Steifigkeit
A_{pl}	$[\mathrm{cm}^2]$	Querschnittsfläche des plastisch verformten Bereichs
A_K	$[\mathrm{cm}^2]$	Querschnittsfläche der Konstruktion
A_N	$[\mathrm{cm}^2]$	Querschnittsfläche des Schweißgutes
b	[1/s]; [cm]	Temperaturübergangsfaktor für Platten und Stäbe;
		Abstand zwischen den Spannelementen
b_0	[mm]	Breite der Zone ohne elastische Eigenschaft
b_{400}	[mm]	Breite der Zone, die im Mittel um 400°C erwärmt wird
b_e	[1/s]	Temperaturübergangsfaktor bei erzwungener Abküh-
		lung
b_s	[mm]	Breite der Schweißnaht

b_{pZ}	[cm]	Breite der plastisch verformten Zone
b_N	[mm]	Mittlere Nahtbreite
Δb	[cm]	Änderung der Plattenbreite durch plastische Querde-
		formationen
B_1	[-]	Erfassung eingespannter Querdeformationen in massi-
		ven Werkstücken
B_2	[-]	Dimensionsloses Kriterium zur Bestimmung des effek-
		tiven Wirkungsgrades
B_3	$[kal/cm^3]$	Kriterium zur Bestimmung des Maßes der Durchwär-
		mung
B_z	$[kal/cm^3]$	Kriterium zur Bestimmung des Zentrums plastischer
		Querdeformationen
с	[J/gK]	Spezifische Wärmekapazität
C_0	$[J/mm^2 sK^4]$	Strahlungszahl
$[C_T]$	[J/gK]	Wärmekapazitätsmatrix
[D]	[N/mm]	Steifigkeitsmatrix
D	$[1/cm^2]$	Parameter für die Nachgiebigkeit einer Konstruktion
		gegen exzentrische Lasten
f	[mm]	Durchbiegung
F	[N]	Kraft
F_x	[N]	Längsschrumpfkraft
$\{F\}$	[N]	Spaltenvektor der mechanischen Last auf jedem Kno-
		ten
G	$[N/mm^2]$	Schubmodul
h	$[J/mm^3]$	Volumenspezifische Enthalpie
h_0	[mm]	Höhe der Zone ohne elastische Eigenschaft
h_s	[mm]	Tiefe der Schweißnaht
$i_{y,z}$	[cm]	Trägheitsradius in Richtung der jeweiligen Achse
Ι	[A]	Stromstärke
$I_{y,z}$	$[\mathrm{cm}^4]$	Axiales Flächenträgheitsmoment; y- und z-Achse
K_0	[-]	Steuerungsparameter der iterativen Bestimmung der
		plastischen Zone; Besselsche Funktion eines imaginären
		Arguments zweiter Art und nullter Ordnung
K_{av}	[-]	Faktor zur Erfassung des Einflusses von versteifenden
		Querstreben
K_{χ}	[-]	Faktor, der den Einfluss des Wärmeaustauschs auf die
		Breite der plastischen Zone erfasst

$K_{\chi\delta}$	[-]	Faktor, der den Einfluss des Wärmeaustauschs und der
		Plattendicke auf die Breite der plastischen Zone erfasst
K_{ϕ}	[-]	Faktor zur Berücksichtigung der Wärmeabgabe an das
		Pulver
K_{δ}	[-]	Faktor, der den Einfluss des Maßes der Durchwärmung
		erfasst
K_C	[-]	Faktor, der die Überhitzung der Schweißverbindung er-
		fasst
K_k	[-]	Faktor, der die Nachgiebigkeit der Struktur erfasst
K_v	[-]	Einfluss der Schweißgeschwindigkeit auf die Quer-
		$\operatorname{schrumpfungen}$
K_W	[-]	Faktor, der einen erzwungenen Wärmeaustausch er-
		fasst
K_{σ}	[-]	Faktor, der den Einfluss von bestehenden Eigenspan-
		nungen erfasst
k	[N/mm]	Steifigkeit
k^*	[N/mm]	Federsteifigkeit
$[K_T]$	[J/msK]	Wärmeleitungsmatrix
l	[mm]	Länge
l_E	[mm]	Elementkantenlänge
m	[-]	Einfluss der Plattenlänge auf die Wirkung von Quer-
		spannungen
N	[-]	Anzahl der Knoten
p	[-]	Progressionsfaktor; Erfassung des Maßes der Durch-
		wärmung beliebiger Werkstoffe
q	[J/s]	Effektive Wärmeleistung
q_3	$[\mathrm{J/sm^3}]$	Über ein Volumen veränderlicher Wärmestrom
q^*	$[J/sm^2]$	Wärmestromdichte
q_V	$[\mathrm{J/sm^2}]$	Volumenspezifische Wärmestromdichte
q_K	$[\mathrm{J/sm^2}]$	Wärmestromdichte der Konvektion
q_r	$[J/sm^2]$	Wärmestromdichte der Wärmestrahlung
q_s	[J/cm]	Streckenenergie
Q_{-}	[J]	Wärmemenge
$\left\{\dot{Q}\right\}$	[J/s]	Spaltenvektor der punktuellen Wärmeleistungen auf
		den Knoten
r	[mm]	Radius
r_0	[mm]	Krümmungsradius einer Schweißtrajektorie

r_{pl}	[mm]	Abstand von der gekrümmten Trajektorie, bei der die
		Fließgrenzdehnung erreicht wird
r_x	[mm]	Radiusvektor einer Ebene senkrecht zur x-Achse
R	[-]	Regressionskoeffizient
$R_{p0,2}$	$[N/mm^2]$	0,2%-Dehngrenze
Sp	[mm]	Abstand des Schwerpunkts der plastischen Dehnungen
		vom Schwerpunkt des Plattenquerschnitts
t	[s]; [cm]	Zeit; Abstand zwischen versteifenden Rippen
t_m	$[\mathbf{s}]$	Zeitpunkt beim Erreichen der Maximaltemperatur
t_0	$[\mathbf{s}]$	Zeitpunkt, bei dem die Schweißnaht während der Ab-
		kühlung ihre elastische Eigenschaft wiedererlangt
Т	[K;°C]	Temperatur
T_0	[°C]	Temperatur, bei der der Werkstoff seine elastische Ei-
		genschaft verliert
T_m	$[^{\circ}C]$	Maximaltemperatur, Höchsttemperatur, Spitzentem-
		peratur
T_s	$[^{\circ}C]$	Schmelztemperatur
T_U	[K;°C]	Umgebungstemperatur, Anfangstemperatur
$\{T\}$	[K]	Spaltenvektor der Temperaturen der Knoten
$\{\dot{T}\}$	[K/s]	Spaltenvektor der zeitlichen Ableitung der Temperatu-
U	ь / л	ren der Knoten
u	[mm]	Verschiebung
u_G	[mm]	Verschiebung am globalen Modell
u_L	[mm]	Verschiebung am lokalen Modell
U	[V]	Lichtbogenspannung
$\{u\}$	[mm]	Spaltenvektor der Verschiebungen jeden Knotens
v_s	$[\mathrm{cm/s}]$	Schweißgeschwindigkeit
x	[mm]	Raumkoordinate in Schweißrichtung
x_0	[mm]	Länge der Isotherme bei der die Fließgrenzspannung
		auf Null abgefallen ist
x_{0e}	[mm]	Länge der Isotherme T_0 bei erzwungenem Wärmeaus-
		tausch
x_{0f}	[mm]	Länge der Isotherme T_0 bei freiem Wärmeaustausch
x_{σ}	[mm]	Länge der Isotherme, die der vorhandenen Spannung σ
		entspricht
y	[mm]	Raumkoordinate in Schweißquerrichtung

y_0	[mm]	Abstand von der Wärmequelle, bei der die Fließgrenz-
		dehnung erreicht wird
y_c	[cm]	Abstand der Schweißnaht vom Flächenschwerpunkt der
		Querschnittsfläche in y-Richtung
y_{pl}	[mm]	Ausdehnung der Isotherme mittlerer plastischer Deh-
		nungen
z	[mm]	Raumkoordinate in Plattendickenrichtung
z_c	[cm]	Abstand des Zentrums plastischer Dehnungen von der
		Plattenoberseite
z_x	[cm]	z-Koordinate des Kraftangriffspunkts in Längsrichtung
z_y	[cm]	z-Koordinate des Kraftangriffspunkts in Querrichtung