Gestaltung und Optimierung einer nichtschaltbaren Lamellenkupplung aus Glasfaser-Kunststoff-Verbund

Am Fachbereich Maschinenbau

an der Technischen Universität Darmstadt

zur

Erlangung des Grades eines Doktor-Ingenieurs (Dr.-Ing.)

genehmigte

Dissertation

vorgelegt von

Jakob Katz, M. Sc.

aus Heidelberg

Berichterstatter: Mitberichterstatter: Tag der Einreichung: 04.08.2015 Tag der mündlichen Prüfung: 06.10.2015

Prof. Dr.-Ing. Helmut Schürmann Prof. Dr.-Ing. Horst Idelberger

D17

Schriftenreihe Konstruktiver Leichtbau mit Faser-Kunststoff-Verbunden

Jakob Katz

Gestaltung und Optimierung einer nichtschaltbaren Lamellenkupplung aus Glasfaser-Kunststoff-Verbund

D 17 (Diss. TU Darmstadt)

Shaker Verlag Aachen 2015

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: Darmstadt, Techn. Univ., Diss., 2015

Copyright Shaker Verlag 2015 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8440-4091-3 ISSN 1439-7390

Shaker Verlag GmbH • Postfach 101818 • 52018 Aachen Telefon: 02407 / 95 96 - 0 • Telefax: 02407 / 95 96 - 9 Internet: www.shaker.de • E-Mail: info@shaker.de

Kurzfassung

Gegenstand dieser Arbeit ist die Entwicklung und Optimierung einer nichtschaltbaren Lamellenkupplung aus Glasfaser-Kunststoff-Verbund (GFK). Gegenüber dem klassischen Lamellen-Werkstoff Stahl bietet GFK die Vorteile einer höheren spezifischen Festigkeit, einer höheren Korrosionsbeständigkeit sowie einer elektrischen Isolation.

Zunächst werden voneinander unabhängige, theoretische Untersuchungen zum freien Bereich und zum Krafteinleitungsbereich der Lamelle durchgeführt. Zum Krafteinleitungsbereich, in dem eine Feinverzahnung zum Einsatz kommt, werden zusätzlich Versuche durchgeführt. Aus den Ergebnissen dieser Untersuchungen werden Konstruktionsrichtlinien zur Auslegung von GFK-Lamellenkupplungen abgeleitet.

In einer weiteren theoretischen Untersuchung werden Eigenschaften der Kupplung, die einen wesentlichen Einfluss auf das Verhalten des Antriebsstrangs haben, untersucht. Dazu gehören die Festigkeit, die Steifigkeit sowie der Gleichlauf.

Anschließend werden mögliche Fertigungsverfahren vorgestellt und Versuche mit einer GFK-Lamellenkupplung durchgeführt. Die Versuchsergebnisse legen nahe, dass mit der untersuchten GFK-Lamellenkupplung ähnliche Leistungsdaten wie mit einer Referenz-Lamellenkupplung aus Stahl zu erreichen sind. Dabei weist die neuentwickelte Kupplung die oben genannten Vorteile auf.

Inhaltsverzeichnis

Sy	mbol	verzeich	inis	IX
1	Einle 1.1 1.2 1.3	itung Motiva Zielset Stand o 1.3.1 1.3.2	tion	1 1 2 2 2 4
2	Defir	nitionen	und Grundlagen	9
	2.1	Begriff 2.1.1 2.1.2 2.1.3	sklärungen Lamellenkupplung Versatz und Verlagerung Feinzahnung und Feinverzahnung	9 9 9 11
	2.2	Berech 2.2.1 2.2.2 2.2.3	nung von Faser-Kunststoff-Verbunden	11 12 17 18
3	Theo 3.1	retische Zur Kir	• Untersuchung des freien Bereichs nematik der Stränge	23 23
	3.2	Die Str 3.2.1 3.2.2	änge unter Last Die Lamelle mit geraden Strängen unter Drehmomentlast . Die Lamelle mit vorgekrümmten Strängen unter Drehmo- mentlast und Axialverlagerung	27 28 33
	3.3	Fazit z	ur Untersuchung des freien Bereichs	41
4	Unte	rsuchur	ng des Krafteinleitungsbereichs	43
	4.1 4.2	Probek FEA de 4.2.1 4.2.2	örpergeometrie, Werkstoffe und Lastfälle s Krafteinleitungsbereichs	43 45 48 50

	4.34.44.5	Experimentelle Untersuchung der Krafteinleitung4.3.1Versuchsplan4.3.2VersuchsdurchführungErgebnisse der Versuche und Vergleich mit den Ergebnissen der FEA4.4.1Quasistatische Last4.4.2Schwingende LastFazit zur Untersuchung des Krafteinleitungsbereichs	54 56 57 58 58 61 63
5	FFA (der Gesamtkunnlung	65
-	5.1	Das Kupplungs-Berechnungsprogramm	65
	5.2	Aufbau des FE-Modells aus dem Berechnungsprogramm	66
	0.1	5.2.1 Geometrie und Laminat	66
		5.2.2 Randbedingungen und Rechenschritte	70
		5.2.3 Vernetzung und Konvergenz	70
	5.3	Eigenschaften der Gesamtkupplung	71
		5.3.1 Gleichlauf	71
		5.3.2 Kräfteaufteilung in die Stränge	72
		5.3.3 Rückstellbiegemoment bei Winkelverlagerung	74
		5.3.4 Axial-, Dreh- und Winkelfedersteifigkeit	74
		5.3.5 Festigkeit	74
	5.4	Fazit zur Analyse der Gesamtkupplung	75
6	Ausle	egung von FKV-Lamellenkupplungen	77
	6.1	Vorgehen und Hinweise	77
	6.2	Beispiel mit Parameterbetrachtung	80
		6.2.1 Grobauslegung	81
		6.2.2 Feinauslegung	82
	6.3	Fazit zur Auslegung	86
7	Ferti	gung von FKV-Lamellenkupplungen	89
-	7.1	Pressverfahren	89
	7.2	Wickelverfahren	93
	7.3	Kombiniertes Harzinjektions-/Pressverfahren	95
	7.4	Bewertung der Verfahren	98
	7.4 7.5	Bewertung der Verfahren Fazit	98 99
8	7.4 7.5	Bewertung der Verfahren Fazit	98 99 101
8	7.4 7.5 Expe 8.1	Bewertung der Verfahren Fazit rimentelle Untersuchung von GFK-Lamellenkupplungen Prüfvorrichtung	98 99 101 101
8	7.4 7.5 Expe 8.1 8.2	Bewertung der Verfahren Fazit rimentelle Untersuchung von GFK-Lamellenkupplungen Prüfvorrichtung Probekörper	98 99 101 101 101
8	7.4 7.5 Expe 8.1 8.2 8.3	Bewertung der Verfahren Fazit Fazit Fazit rimentelle Untersuchung von GFK-Lamellenkupplungen Prüfvorrichtung Probekörper Versuchsplan	98 99 101 101 101 103

	8.4 8.5 8.6	Versuchsdurchführung	104 106 108
9	Zusaı	nmenfassung und Ausblick	111
Lit	Literaturverzeichnis 1		113
Α	Werkstoffdaten		121
В	Zum	Knickstab nach Eulerfall 4 oberhalb der Verzweigungslast	125
С	Die G	leichungen zum Kinematikmodell	131
D	Detai D.1 D.2	ls zur Untersuchung der Krafteinleitung Zur Herstellung der Probekörper	135 135 137
E	Zur te	echnischen Umsetzung des Berechnungsprogramms	139

Symbolverzeichnis

Symbole mit mehrfacher Bedeutung sind hier mehrfach aufgeführt. Sie ergeben sich aus dem jeweiligen Kontext, in dem sie auftauchen.

Symbole, die nur im Anhang dieser Arbeit vorkommen, sind dort erklärt und hier nicht aufgeführt.

Abkürzungen

Ausgeglichener Winkelverbund
Kohlenstofffaser-Kunststoff-Verbund
Klassische Laminattheorie
Faserbruch
Finite-Elemente
Finite-Elemente-Analyse
Finite-Elemente-Methode
Faser-Kunststoff-Verbund
Faservolumenanteil
Glasfaser-Kunststoff-Verbund
Koordinatensystem
Mehrschichtenverbund
Selektives Lasersintern
unidirektional faserverstärkte Schicht
Zwischenfaserbruch

Griechische Formelzeichen

Einheit

$lpha_{ m AWV}$	AWV-Winkel;	Winkel	zwischen	x-Richtung	und	1-	0
	Richtung						

$lpha_k$	Faserorientierungswinkel der k -ten Schicht; Winkel zwischen x -Richtung und 1-Richtung	o
$\alpha_{\mathrm{M,f,\parallel}},\alpha_{\mathrm{M,f,\perp}}$	Quell-Ausdehnungskoeffizienten der Faser, längs und quer	-
$\alpha_{\mathrm{M,m}}$	Quell-Ausdehnungskoeffizient der Matrix	-
$\alpha_{\mathrm{M},\parallel}$, $\alpha_{\mathrm{M},\perp}$	Quell-Ausdehnungskoeffizienten der UD-Schicht, längs und quer	-
α_0	Winkel zwischen zwei Armen der zwei Flansche im last- freien Zustand	0
$\alpha_{\mathrm{T,f,\parallel}}, \alpha_{\mathrm{T,f,\perp}}$	thermische Ausdehnungskoeffizienten der Faser, längs und quer	$\frac{1}{K}$
$\alpha_{\mathrm{T,m}}$	thermischer Ausdehnungskoeffizient der Matrix	$\frac{1}{K}$
$lpha_{\mathrm{T},\parallel}, lpha_{\mathrm{T},\perp}$	thermische Ausdehnungskoeffizienten der UD-Schicht, längs und quer	$\frac{1}{K}$
β	Spitzenwinkel der pyramidenförigen Zähne	0
$ ilde{\gamma}_{ ilde{z}, \mathbf{l}}, ilde{\gamma}_{ ilde{z}, \mathbf{r}}$	im FE-Modell verwendete Verdrehung des linken bzw. rechten Strangendes um die \tilde{z} -Richtung	0
$\gamma_{P,\hat{x}}, \gamma_{P,\hat{y}}, \gamma_{P,\hat{z}}$	Verdrehung des rechten Endes des Zugstrangs relativ zu seinem linken Ende um die \hat{x} -, \hat{y} - bzw. \hat{z} -Richtung	0
Δl	Längung des Strangs aufgrund von Verlagerungen	mm
$\eta_{ m w1}$	Schwächungsfaktor zur Berücksichtigung faserparalleler Spannungen	-
$ heta_{ m fp}$	Bruchwinkel	0
к	Schubkorrekturfaktor	-
μ	fiktiver Reibkoeffizient zur Berechnung der Feinverzah- nung	-
ν	Querkontraktionszahl des Klemmbacken-Werkstoffs	-
$egin{aligned} & u_{\mathrm{f},\parallel\perp}, \ & u_{\mathrm{f},\perp\parallel}, \ & u_{\mathrm{f},\perp\perp} \end{aligned}$	Querkontraktionszahlen der Faser, längs-quer, quer-längs und quer-quer	-
$egin{array}{lll} & u_{\parallel\perp}, \ u_{\perp\parallel}, \ u_{\perp\perp} \end{array}$	Querkontraktionszahlen der UD-Schicht, längs-quer, quer- längs und quer-quer	-
ρ	Dichte des Verbunds	$\frac{g}{cm^3}$
$ ho_{ m f}$	Dichte der Faser	$\frac{g}{cm^3}$
$ ho_{ m m}$	Dichte der Matrix	$\frac{g}{cm^3}$

$\sigma_1, \sigma_2, \sigma_3$	Normalspannungen im 123-KOS der UD-Schicht	$\frac{N}{mm^2}$
$\sigma_{\rm d,M}, \sigma_{\rm z,M}$	maximale Normalspannung im Druck- bzw. Zugstrang auf- grund eines Biegemoments	$\frac{N}{mm^2}$
$\sigma_{\rm d,N}, \sigma_{\rm z,N}$	Normalspannung im Druck- bzw. Druckstrang aufgrund einer Normalkraft	$\frac{N}{mm^2}$
$\sigma_{\rm f,1}$	faserparallele Normalspannung in der Faser	-
σ_n	Normalspannung auf einer faserparallelen Ebene unter dem Winkel θ zur 13-Ebene	$\frac{N}{mm^2}$
$ au_{23}, au_{31}, au_{21}$	Schubspannungen im 123-KOS der UD-Schicht	$\frac{N}{mm^2}$
$\tau_{\rm d,Q},\tau_{\rm z,Q}$	maximaler Querkraftschub im Druck- bzw. Zugstrang	$\frac{N}{mm^2}$
τ_{n1}, τ_{nt}	Quer-Längs- bzw. Quer-Quer-Schubspannung auf einer faserparallelen Ebene unter dem Winkel θ zur 13-Ebene	$\frac{N}{mm^2}$
φ_1,φ_2	absoluter Drehwinkel von Flansch 1 bzw. Flansch 2	c
φ	Faservolumenanteil	-
ω_1, ω_2	Winkelgeschwindigkeit von Flansch 1 bzw. 2	° S

Indizes

-	Größe bezieht sich auf die UD-Schicht und ist im $x yz$ -KOS angegeben
^	Größe bezieht sich auf den MSV (bzw. AWV) und ist im xyz -KOS angegeben
+,-	Zug bzw. Druck
,⊥	faserparallel oder längs bzw. senkrecht oder quer
z,d	Zugstrang bzw. Druckstrang

Koordinatensysteme

123	Werkstoff-KOS der UD-Schicht
xyz	Werkstoff-KOS des Laminats bzw. des AWVs
xyz	ortsfestes KOS im Schwerpunkt von Flansch 1
<i>x̂ ŷ</i> ź	mit Flansch 1 mitrotierendes KOS

<i>x̃ ỹ z̃</i>	im FE-Modell zur Krafteinleitung verwendetes, ortsfestes
	KOS

Lateinische Formelzeichen			
а	Anzahl Bohrungen über den Umfang der Lamelle	-	
A_{K}	Klemmfläche; entspricht der Größe der feingezahnten Oberfläche	mm^2	
$A_{\rm N}$	Nennquerschnitt der Schraube	mm^2	
Az	Querschnittsfläche des Zugstrangs	mm^2	
bz	Breite des Zugstrangs	mm	
c _a	Axialfedersteifigkeit der Kupplung	Mmm	
c_T	Drehfedersteifigkeit der Kupplung	$\frac{N mm}{\circ}$	
c _w	Winkelfedersteifigkeit der Kupplung	<u>N mm</u>	
$\Delta W_{\rm a}$	Axialverlagerung	mm	
$\Delta W_{\rm a,e}$	einseitig aufgebrachte Axialverlagerung	mm	
$\Delta W_{\rm r}$	Radialverlagerung	mm	
$\Delta W_{\rm w}$	Winkelverlagerung	0	
Ε	Elastizitätsmodul des Klemmbacken-Werkstoffs	$\frac{N}{mm^2}$	
$E_{\mathrm{f},\parallel}, E_{\mathrm{f},\perp}$	Elastizitätsmoduln der Faser, längs und quer	$\frac{N}{mm^2}$	
E _m	Elastizitätsmodul der Matrix	$\frac{N}{mm^2}$	
E_{\parallel}, E_{\perp}	Elastizitätsmoduln der UD-Schicht, längs und quer	$\frac{N}{mm^2}$	
F _a	axiale Rückstellkraft bei Axialverlagerung	N	
$f_{\rm E0,Zfb}$	Zwischenfaserbruch-Anstrengung ohne Abminderung durch faserparallele Spannungen	-	
$f_{\rm E1,Fb}$	Faserbruch-Anstrengung mit Berücksichtigung der Behin- derung der faserparallelen Querkontraktion durch die Ma- trix	-	
$f_{\rm E1,Zfb}$	Zwischenfaserbruch-Anstrengung mit Abminderung durch faserparallele Spannungen	-	
$f_{\rm E,Fb}$	Faserbruch-Anstrengung	-	
$f_{arepsilon, ext{quad.,max.}}$	Dehnungsvergrößerungsfaktor; Hilfsgröße zur mikromechanischen Berechnung von E_{\perp}	-	

$F_{\rm F}$	Summe der auf den Flanscharm wirkenden Normalkräfte	Ν
F, F_{\max}, F_{\min}	Zugkraft zur Prüfung der Krafteinleitung bzw. deren ma- ximaler oder minimaler Wert	Ν
$f_{\gamma, ext{quad.,max.}}$	Schiebungsvergrößerungsfaktor; Hilfsgröße zur mikromechanischen Berechnung von $G_{\perp\parallel}$	-
$F_{\rm Mmin}$	Mindest-Montagevorspannkraft der Schraube	kN mm
$G_{\mathrm{f},\perp\parallel},G_{\mathrm{f},\perp\perp}$	Schubmoduln der Faser, quer-längs und quer-quer	$\frac{N}{mm^2}$
G _m	Schubmodul der Matrix	$\frac{N}{mm^2}$
$G_{\perp\parallel},G_{\perp\perp}$	Schubmoduln der UD-Schicht, quer-längs und quer-quer	$\frac{N}{mm^2}$
$h_{ m Vk}$	Höhe der Vorkrümmung	mm
$h_{ m V}$	Höhe der Vorkrümmung in den Strängen	mm
k	Wöhlerkoeffizient	-
$k_{\rm dyn}$	dynamische Steifigkeit, Quotient aus Lastmagnitude und zugehöriger Wegmagnitude	<u>kN</u> mm
$l_{\rm Vk}$	Länge des vorgekrümmten Bereichs	mm
bz	Länge des Zugstrangs	mm
М	Feuchtegehalt; Zusatzmasse durch Feuchte geteilt durch Ausgangsmasse	-
т	Schwächungsparameter für Ende der Abschwächung	-
$m_{\sigma,\mathrm{f}}$	mittlerer Vergrößerungsfaktor	-
$M_{ m w}$	Rückstellbiegemoment der Kupplung bei Winkelverlage- rung	Nm
Ν	Schwingspielzahl	-
<i>N</i> _z , <i>N</i> _d	Normalkraft im Zug- bzw. Druckstrang	Ν
p, p_{zul}	tatsächliche bzw. zulässige mittlere Flächenpressung im Klemmbereich	$\frac{N}{mm^2}$
$p_{\perp\parallel}^-, p_{\perp\parallel}^+$	Neigungsparameter der σ_n, τ_{n1} -Bruchkurve an der Stelle $\sigma_n = 0 \frac{N}{mm^2}$	-
$p_{\perp\perp}^-, p_{\perp\perp}^+$	Neigungsparameter der σ_n, τ_{nt} -Bruchkurve an der Stelle $\sigma_n = 0 \frac{N}{mm^2}$	-
Q _d	Querkraft durch Axialverlagerung im Druckstrang	Ν
Q _F	Differenz der auf den Flanscharm wirkenden Querkräfte in axialer Richtung	Ν

$Q_{\rm z}$	Querkraft durch Axialverlagerung im Zugstrang	Ν
R	Lastverhältnis, Quotient aus minimaler und maximaler Last	-
R	Lochkreisradius der Lamelle	mm
$R_{\mathrm{f},\parallel}^-$	Druckfestigkeit der Faser, längs	$\frac{N}{mm^2}$
$R_{\mathrm{f},\parallel}^+$	Zugfestigkeit der Faser, längs	$\frac{N}{mm^2}$
$R_{\parallel}^{-}, R_{\parallel}^{+}$	Druck- und Zugfestigkeit der UD-Schicht, längs	$\frac{N}{mm^2}$
$R_{\perp}^{-}, R_{\perp}^{+}$	Druck- und Zugfestigkeit der UD-Schicht, quer	$\frac{N}{mm^2}$
$R_{\perp\parallel}$	Schubfestigkeit der UD-Schicht, quer-längs	$\frac{N}{mm^2}$
$R^{\rm A}_{\perp\perp}$	Wirkebenen-Bruchwiderstand der UD-Schicht, quer-quer	$\frac{N}{mm^2}$
S	Abminderungsfaktor zur Abschätzung der Zeitfestigkeit aus der quasistatischen Festigkeit	-
S	Schwächungsparameter für Beginn der Abschwächung	-
S	Nachgiebigkeitsmatrix der UD-Schicht im 123-KOS	$\frac{mm^2}{N}$
Ī	Nachgiebigkeitsmatrix der UD-Schicht im xyz-KOS	$\frac{mm^2}{N}$
Ŝ	Nachgiebigkeitsmatrix des MSV im $x yz$ -KOS	$\frac{mm^2}{N}$
t	Dicke der Kupplung	mm
Т	Temperatur	К
$T_{\varepsilon,123 \rightarrow xyz}$	Matrix zur Dehnungstransformation vom 123-KOS in das xyz-KOS	-
$T_{\varepsilon,xyz \to 123}$	Matrix zur Dehnungstransformation vom <i>x y z</i> -KOS in das 123-KOS	-
$T_{\rm K}$	auf die Kupplung wirkendes Drehmoment	Nm
$T_{\rm KN}$, $T_{\rm Kmax}$	Nenndrehmoment und Maximaldrehmoment	Nm
$T_{\sigma,123 \rightarrow xyz}$	Matrix zur Spannungstransformation vom 123-KOS in das x yz-KOS	-
$T_{\sigma,xyz \to 123}$	Matrix zur Spannungstransformation vom <i>x y z</i> -KOS in das 123-KOS	-
b _z	Dicke des Zugstrangs	mm
$\tilde{u}_{\rm l}, \tilde{u}_{\rm r}, \tilde{v}_{\rm l}, \tilde{v}_{\rm r}$	im FE-Modell verwendete Verschiebung des linken (l) bzw. rechten (r) Strangendes in \tilde{x} - bzw. \tilde{y} -Richtung	mm

$\hat{v}_P, \hat{v}_P, \hat{w}_P$	Verschiebungen des rechten Endes des Zugstrangs relativ zu seinem linken Ende in \hat{x} -, \hat{y} - bzw. \hat{z} -Richtung	mm
u _ü	Verschiebung des Endes des Druckstrangs im überkriti- schen Bereich	mm
Ŵ	Verschiebung eines Punktes des Strangs in \tilde{z} -Richtung	μm