Windinduzierter Partikeltransport -Synergetische Kombination von physikalischer und numerischer Simulation

Dissertation

zur Erlangung des akademischen Grades

Doktor-Ingenieurin (Dr.-Ing.)

der Fakultät für Bau- und Umweltingenieurwissenschaften der Ruhr-Universität Bochum

von Dipl.-Ing. Cornelia Kalender-Wevers aus Viersen

Gutachter: Prof. Dr.-Ing. Rüdiger Höffer, Ruhr-Universität Bochum Dr.-Ing. Jörg Franke, Vietnamese-German University Prof. Dr.-Ing. Bernd Leitl, Universität Hamburg

Datum der Einreichung:	25.04.2014
Tag der mündlichen Prüfung:	27.11.2014

Berichte aus dem Bauwesen

Cornelia Kalender-Wevers

Windinduzierter Partikeltransport

Synergetische Kombination von physikalischer und numerischer Simulation

> Shaker Verlag Aachen 2015

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: Bochum, Univ., Diss., 2014

Copyright Shaker Verlag 2015 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8440-3828-6 ISSN 0945-067X

Shaker Verlag GmbH • Postfach 101818 • 52018 Aachen Telefon: 02407 / 95 96 - 0 • Telefax: 02407 / 95 96 - 9 Internet: www.shaker.de • E-Mail: info@shaker.de

Vorwort

Die vorliegende Arbeit entstand während meiner Tätigkeit als wissenschaftliche Mitarbeiterin in der Arbeitsgruppe *Windingenieurwesen und Strömungsmechanik (WIST)* an der Ruhr-Universität in Bochum unter der Betreuung von Herrn Prof. Dr.-Ing. Rüdiger Höffer. Ihm danke ich sehr für die Möglichkeit der Promotion in diesem sehr interessanten und aktuellen Forschungsbereich. Sein mir uneingeschränkt entgegengebrachtes Vertrauen, seine optimistische Art und moralische Unterstützung ermutigten mich, stets an den Erfolg zu glauben. Nicht weniger möchte ich Herrn Dr.-Ing. Jörg Franke für die Übernahme eines Koreferates und die hilfreiche fachliche und menschliche Unterstützung danken. Ebenso gilt mein besonderer Dank Herrn Prof. Dr.-Ing. Bernd Leitl für wertvolle Hinweise und Korrekturen sowie die Bereitschaft ebenfalls ein Koreferat zu übernehmen.

Ohne die freundschaftliche und kollegiale Unterstützung der gesamten Arbeitsgruppe wäre die Anfertigung dieser Arbeit nicht möglich gewesen. Dabei möchte ich mich ganz besonders bei Anina Šarkić für eine unvergessliche Bürogemeinschaft bedanken. Viele fachliche Diskussionen, sowie die sehr gute produktive Zusammenarbeit haben uns gemeinsam vorwärts gebracht und zum gelingen dieser Arbeit beigetragen. Dabei entstand eine große Freundschaft. Ich danke auch Volkmar Görnandt, Stefan Lachmann und Ulf Winkelmann, die mich immer moralisch und menschlich aber auch fachlich in vielen Gesprächen unterstützt haben. Reinhard Elke und Uwe Wagner danke ich für die tatkräftige und ideenreiche Unterstützung bei der Vorbereitung und Durchführung der Experimente im Grenzschichtwindkanal. Nicht zuletzt möchte ich mich bei Christa Hoogterp bedanken, die immer ein offenes Ohr hatte und mit Bodenständigkeit und viel Humor den Arbeitsalltag erleichtert hat. Außerdem danke ich allen Kollegen, Freunden und meiner Mutter, die diese Arbeit gewissenhaft durchgesehen haben, für ihre Mühen und Anregungen.

Abschließend gilt mein ausdrücklicher Dank meinem Mann und meiner Familie für ihr Verständnis und den bedingungslosen Rückhalt während der gesamten Zeit.

Bochum, 27.05.2015

Abstract

To model the dispersion of dust particles due to wind in the atmospheric boundary layer flow two different model approaches are combined and used in this work. Therefore on one hand physical wind tunnel experiments were performed by measuring the dilution of an injected tracer gas. On the other hand numerical simulations were done using a commercial finite volume solver and with an EULER- as well as a LA-GRANGE-approach to model the dispersion. A model gives always only a reduced and model-depended picture of the reality, which highly depends on each model concept and set up. This yields to different simulation results of each used model. One aim of this work is to combine the models in order to use specific advantage in a hybride way and to overcome its specific drawbacks. Therefore a detailed analysis of the different influencing parameters and uncertainties is done. The synergistic combination of the physical and numerical methods allows to model the particle transport in the urban environment as real as possible and to gain new detailed knowledge for environmental techniques. As example of use the behaviour of partly open industrial halls with a dust source inside were analysed. They are build up around stored soil material to reduce the immission impact on the surrounding environment. There is no consistent trend found by comparing the physical and numerical simulation results of the concentration distribution behind the different building settings. In case of a point source on the top of a cubic building the numerically calculated concentrations are highly overestimated in the leeward zone. In contrast to this the numerical concentration predictions behind the buildings were underestimated. This shows the necessity of a validation procedure for each model configuration. It can be shown, that the predictions of the numerical and physical model approach can complete each other and the hybrid use highly increase the integrity of the results.

Dispersion Modelling, Particle Tracking, Atmospheric Boundary Layer, Computational Fluid Dynamics, Boundary Layer Wind Tunnel

Zusammenfassung

Für die Vorhersage von Staubausbreitung durch Wind in der bodennahen atmosphärischen Grenzschicht kommen in dieser Arbeit zwei verschiedene Modelle in Kombination zum Einsatz. Zum einen erfolgt die Modellierung physikalisch im Grenzschichtwindkanal anhand von Ausbreitungsversuchen mit einem Tracergasgemisch und zum anderen numerisch mit einem kommerziellen Finite-Volumen Strömungslöser unter Verwendung eines EULER- und eines LAGRANGE-Ansatzes. Ein Modell ist immer ein vereinfachtes Abbild der Realität, so dass je nach Konzeption des Modells die Modellergebnisse für den selben Anwendungsfall verschieden sind. Ziel dieser Arbeit ist es, die eingesetzten Modelle mit einander so zu kombiniert, dass ihre Vorteile hybrid genutzt und dadurch ihre jeweiligen modellspezifischen Nachteile und Grenzen überwunden werden. Dies erfordert eine detaillierte Betrachtung der verschiedenen Einflussparameter sowie die Untersuchung der jeweiligen Unsicherheiten. So ermöglicht die synergetische Nutzung beider Ansätze, den Transport der Partikel in der bebauten Umwelt möglichst realitätsnah abzubilden und neue Erkenntnisse für die Anwendung in der Umwelttechnik zu erlangen. Dies betrifft als Anwendungsfall insbesondere die Wirksamkeit von Teileinhausungen, die zur Immissionsminderung beim Umschlag und der Lagerung von staubenden Gütern zum Einsatz kommen. Beim Vergleich der Ergebnisse der numerischen Simulation mit den physikalischen Simulationen zeigt sich kein konsistenter Trend der numerischen Vorhersagen in Bezug auf die Konzentrationsverteilungen hinter den Gebäudegeometrien. Im Fall einer Punktquelle auf einem würfelförmigen Gebäude werden die numerisch berechneten Konzentrationen deutlich überschätzt hingegen in den Fällen von Teileinhausungen deutlich unterschätzt. Dies belegt die Notwendigkeit der Validierung der Ergebnisse anhand von Referenzdaten für jede Modellkonfiguration. Es wird gezeigt, dass sich die jeweiligen Modellvorhersagen gegenseitig ergänzen und durch ihre hybride Nutzung die Abbildungsvollständigkeit für die Untersuchungsfälle deutlich erhöht wird.

Ausbreitungsmodellierung, Partikeltransport, atmosphärische Grenzschicht, numerische Strömungsmechanik, Grenzschichtwindkanal

Inhaltsverzeichnis

1	\mathbf{Ein}	leitung	7 2	1
	1.1	Motiv	ation und Problemstellung	1
	1.2	Stand	der Technik der Ausbreitungsmodellierung	6
	1.3	Ziel u	nd Aufbau der Arbeit	8
2	Gre	enzschi	cht- und Turbulenzparameter sowie Modellierung	11
	2.1	Atmos	sphärische Grenzschicht	11
		2.1.1	Windgeschwindigkeitsprofil	13
		2.1.2	Atmosphärische Turbulenzstruktur	15
			Statistische Parameter und Turbulenzintensität	15
			Energiespektren des Windes	17
			Korrelationen und TAYLOR-Hypothese	22
			Integrale Längen- und Zeitmaße	24
	2.2	Physikalische Modellierung der Strömung		26
		2.2.1	Bochumer Grenzschichtwindkanal	26
		2.2.2	Ähnlichkeit der Strömung	26
		2.2.3	Geschwindigkeitsmessungen	28
			PRANDTL-Staurohr	29
			Hitzdrahtanemometrie	29
	2.3	Nume	rische Modellierung der Strömung	32
		2.3.1	Deterministische Grundgleichungen des Strömungsfeldes	32
		2.3.2	Methoden zur Modellierung der Strömungsturbulenz	33
		2.3.3	Verwendetes Turbulenzmodell	36
		2.3.4	Wandfunktionen	37
		2.3.5	Diskretisierungsverfahren	38
			Räumliche Diskretisierung	38
			Zeitliche Diskretisierung	39
		2.3.6	Numerische Lösungsverfahren	40
		2.3.7	Gitter und Randbedingungen	42
		2.3.8	Verwendete Hardware, Software und eingestellte Konvergenzkri-	
			terien	44

3	Mo	dellier	ung des Partikeltransportes	47
	3.1	Wind	induzierter Partikeltransport	47
		3.1.1	Bewegungsformen der Partikel	47
		3.1.2	Transportvorgänge in der turbulenten Grenzschicht	50
			Advektion und molekulare Diffusion	50
			Turbulente Diffusion	51
	3.2	Physil	kalische Modellierung des Partikeltransportes	55
		3.2.1	Konzentrationsmessungen in Ausbreitungsversuchen	55
		3.2.2	Ähnlichkeit der Quellmodellierung	60
	3.3	Nume	rische Modellierung des Partikeltransportes	60
		3.3.1	Tracergas als Partikelmodell (EULER-Modell)	61
		3.3.2	Diskrete Partikel mit dem LAGRANGE-Modell	62
4	\mathbf{Ein}	flussfa	ktoren und Fehlerabschätzungen	65
	4.1	Wisse	enschaftstheoretische Aspekte zur Modellierung	65
	4.2	Termi	nologie und Definitionen	67
	4.3	Einflu	ssfaktoren auf die physikalische Simulation	69
		4.3.1	Modell- und Anwendungsfehler sowie physikalische Plausibilität	69
		4.3.2	Messunsicherheiten und Fehlerfortpflanzung	69
		4.3.3	Unsicherheiten der Geschwindigkeitsmessungen	73
			Einflussfaktoren	73
			Unsicherheiten	76
		4.3.4	Unsicherheiten der Konzentrationsmessungen	78
			Einflussfaktoren und Annahmen	78
			Unsicherheiten	81
	4.4	Einflu	ssfaktoren auf die numerische Simulation	83
		4.4.1	Modell- und Anwendungsfehler sowie physikalische Plausibilität	83
		4.4.2	Numerische Fehler	84
		4.4.3	Gitterabhängigkeit des Diskretisierungsfehlers	86
		4.4.4	Abschätzen des Diskretisierungsfehlers	87
			RICHARDSON Extrapolation (RE)	87
			Entwicklung der Gittervariationen	90
		4.4.5	Ergebnisse der RICHARDSON-Extrapolation	92
		4.4.6	Numerische Diffusion	99
		4.4.7	Einfluss der Turbulenzmodelle	99
		4.4.8	Domaingröße und Gitter	102
		4.4.9	Einfluss von Randbedingungen und Modell-Parametern $\ .\ .$.	107
	4.5	Schlus	ssfolgerungen mit Bezug auf Qualitätssicherung sowie Modellbe-	
		wertu	ng	110
5	Hyl	brider	Modelleinsatz zur Untersuchung von windinduziertem Par	·
	$ ext{tike}$	ltrans	port in vollständiger Suspension	113
	5.1	Validi	erung	113
		5.1.1	Validierungen des physikalischen Modells $\ \ldots \ \ldots \ \ldots \ \ldots$	113
		5.1.2	Validierungen des numerischen Modells	118

		5.1.3	Zusammenfassung und Diskussion der Validierung	120
	5.2 Statistische Parameter für die Modellbewertung			120
	5.3	Ausbre	eitung von Partikeln aus einer Dachquelle (F1)	122
		5.3.1	Modellierung	123
		5.3.2	Vergleich der Konzentrationsverteilungen	123
	5.4	Staubt	transport aus teiloffenen Industriehallen (F2-F5)	129
		5.4.1	Hallenkonfigurationen und Modellierung	129
		5.4.2	Leeseitig offene Halle (F2) \ldots \ldots \ldots \ldots \ldots \ldots	131
			Konzentrationsverteilung	131
			Geschwindigkeitsfelder	135
		5.4.3	Leeseitig und seitlich offene Halle (F3) $\ldots \ldots \ldots \ldots$	141
			Konzentrationsverteilung	141
			$Geschwindigkeitsfelder\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .$	146
		5.4.4	Leeseitig und seitlich offene Halle ohne Dach (F4) $\hfill \ldots \ldots$	150
			Konzentrationsverteilung	150
			$Geschwindigkeitsfelder\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .$	155
	5.5	Ergebr	nis diskussion mit Bezug auf die hybride Informations nutzung $\ . \ .$	158
5.6 Eignung für die ingenieurtechnische Anwendung sowie Beschrei			ng für die ingenieurtechnische Anwendung sowie Beschreibung der	
		Abbild	lungsvollständigkeit	162
	5.7	Grobs	truktur simulation im Vergleich zur stationären Berechnung $\ . \ .$	168
	5.8	Anknü	ipfungspunkte für weitere Arbeiten	170
6	Zusa	ammei	nfassung	173
Sy	mbo	l- und	Abkürzungsverzeichnis	182
Al	bbild	ungsve	erzeichnis	189
		-		
Ta	belle	enverze	eichnis	192
\mathbf{Li}	terat	urverz	eichnis	204
\mathbf{A}	A Anhang			205
в	Lebenslauf 2:			