Moderne Regelungsansätze für Solarsysteme mit integrierter Wärmepumpe zur Gebäudeheizung

Von der Fakultät für Energie-, Verfahrens- und Biotechnik der Universität Stuttgart zur Erlangung der Würde eines Doktor-Ingenieurs (Dr.-Ing.) genehmigte Abhandlung

> Vorgelegt von Tillman Johannes Faßnacht aus Nagold

Hauptberichter:Prof. Dr. Dr.-Ing. habil. Hans Müller-SteinhagenMitberichter:Prof. Dr.-Ing. Michael Schmidt

Tag der mündlichen Prüfung: 2014/12/18

Institut für Thermodynamik und Wärmetechnik (ITW) der Universität Stuttgart

2015

Schriftenreihe der Reiner Lemoine-Stiftung

Tillman J. Faßnacht

Moderne Regelungsansätze für Solarsysteme mit integrierter Wärmepumpe zur Gebäudeheizung

D 93 (Diss. Universität Stuttgart)

Shaker Verlag Aachen 2015

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: Stuttgart, Univ., Diss., 2014

Copyright Shaker Verlag 2015 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8440-3854-5 ISSN 2193-7575

Shaker Verlag GmbH • Postfach 101818 • 52018 Aachen Telefon: 02407 / 95 96 - 0 • Telefax: 02407 / 95 96 - 9 Internet: www.shaker.de • E-Mail: info@shaker.de

Vorwort

Diese Arbeit entstand während meiner Forschungstätigkeit bei der Consolar Solare Energiesysteme GmbH. Sie wurde vom Institut für Thermodynamik und Wärmetechnik (ITW) der Universität Stuttgart wissenschaftlich begleitet und durch ein Stipendium der Reiner-Lemoine-Stiftung finanziell ermöglicht.

Ich möchte Herrn Professor Dr. Dr.-Ing. habil. Hans Müller-Steinhagen für die wissenschaftliche Begleitung der Arbeit und Herrn Professor Dr.-Ing. Michael Schmidt für die Übernahme des Mitberichts herzlich danken. Der Reiner-Lemoine-Stiftung danke ich für das erhaltene Stipendium, ohne das diese Arbeit nicht möglich gewesen wäre. Herrn Doktor Ulrich Leibfried von der Consolar Solare Energiesysteme GmbH gebührt ebenfalls Dank für die jahrelange Betreuung und Unterstützung bei meinen Forschungen. Herrn Doktor Henner Kerskes danke ich für die Betreuung der Arbeit am ITW. Weiterhin ein großer Dank an Herrn Dipl.-Ing. Sebastian Asenbeck [32, 35, 34, 33], der im Wesentlichen die Grundgerüste der Referenzregelung und des Simulationsmodells des Systems entworfen hat und immer zu einer fachlichen Diskussion zur Verfügung stand. Ebenfalls danke ich Xinping Wang [143], Heike Maier [100], Jiayi Ding [48] und Andreas Walz [142] für ihre gewissenhaft durchgeführten Bachelor-, Master- und Diplomarbeiten, die zum Gelingen dieser Arbeit beigetragen haben.

Von ganzem Herzen möchte ich meinen Eltern Wolfgang und Annekathrin danken. Ohne ihre lebenslange Unterstützung und ihren unermüdlichen Einsatz hätte ich nie die Chance für diese Arbeit erhalten. Meiner Frau Gudrun und meinem Sohn Hagen danke ich ebenfalls von ganzem Herzen für die jahrelange Geduld und Akzeptanz dafür, dass ich während dem Entstehen dieser Arbeit, einiges an kostbarer Familienzeit opfern musste. Weiter danke ich auch für die liebevolle Unterstützung in allen Lebenslagen.

Zu guter Letzt möchte ich allen Personen danken, die in irgendeiner Weise zum

Gelingen dieser Arbeit beigetragen haben und bisher nicht erwähnt wurden.

Tillman Faßnacht

Inhaltsverzeichnis

In	halts	verzeic	chnis	vii
N	omen	ıklatur		ix
K	urzfa	ssung		xviii
A	bstra	ct		xix
1	Ein	Einleitung		
	1.1	Überł	blick über verschiedene Solar-Wärmepumpen-Systeme	7
	1.2	Vorst	ellung eines Solar-Wärmepumpen-Systems mit Eisspeicher	
		und H	Iybridkollektoren	10
		1.2.1	Kombispeicher	15
		1.2.2	Hybridkollektor	15
		1.2.3	Wärmepumpe	16
		1.2.4	Eisspeicher	17
	1.3	Feldte	est	18
2	Sim	ulation	nsmodell eines Solar-Wärmepumpen-Systems mit Hybridko	1-
	lekt	oren u	nd Latentwärmespeicher	23
	2.1	Mode	ll der Hybridkollektoren	25
		2.1.1	Hybridkollektor als Flachkollektor	26
		2.1.2	Hybridkollektor als Sole-Luft-Wärmeübertrager	27
		2.1.3	Untersuchung des Kollektormodells	36
	2.2	Mode	ll des Kombispeichers	41
	2.3	Eissp	eichermodell	42
	2.4	Mode	ll der Heizkreispumpe und Fußbodenheizungshydraulik	43

INHALTSVERZEICHNIS

	2.5	Modell der Verdampferkreispumpe	. 48
	2.6	Modellierung des Systemreglers	. 51
	2.7	Wärmepumpenmodell	. 55
	2.8	Vergleich der Simulation mit Messdaten	. 62
	2.9	Gebäudemodell	. 70
		2.9.1 Modelliertes Gebäude	. 72
3	Geb	äudemodell für modellbasierte Regler	79
	3.1	Herleitung des Gebäudemodells für modellbasierte Regler	. 80
	3.2	Parameteridentifikation	. 84
	3.3	Einstellung der Parameter	. 91
4	Reg	elung der Nutzenübergabe von Heizungssystemen	99
	4.1	Heizkurve	. 101
	4.2	Proportional-Integral-Regler der Nutzenübergabe	. 103
	4.3	Linear quadratischer Regler der Nutzenübergabe	. 105
	4.4	Modellbasierter prädiktiver Regler der Nutzenübergabe	107
		1 0 0	. 107
5	Verg	gleich verschiedener Regler der Nutzenübergabe an dem Beispi	el
5	Verg eine	gleich verschiedener Regler der Nutzenübergabe an dem Beispi 25 Solar-Wärmepumpen-Systems	el 115
5	Verg eine 5.1	gleich verschiedener Regler der Nutzenübergabe an dem Beispi es Solar-Wärmepumpen-Systems Referenzsimulation	el 115 . 120
5	Verg eine 5.1 5.2	gleich verschiedener Regler der Nutzenübergabe an dem Beispi es Solar-Wärmepumpen-Systems Referenzsimulation	el 115 . 120 . 122
5	Verg eine 5.1 5.2	gleich verschiedener Regler der Nutzenübergabe an dem Beispi es Solar-Wärmepumpen-Systems Referenzsimulation	el 115 . 120 . 122 . 124
5	Verg eine 5.1 5.2 5.3	gleich verschiedener Regler der Nutzenübergabe an dem Beispi es Solar-Wärmepumpen-Systems Referenzsimulation	el 115 . 120 . 122 . 124 . 125
5	Verg eine 5.1 5.2 5.3 5.4	gleich verschiedener Regler der Nutzenübergabe an dem Beispi es Solar-Wärmepumpen-Systems Referenzsimulation	el 115 . 120 . 122 . 124 . 125 . 128
5	Verg eine 5.1 5.2 5.3 5.4	gleich verschiedener Regler der Nutzenübergabe an dem Beispies Solar-Wärmepumpen-Systems Referenzsimulation Heizkurve 5.2.1 Nutzung der Gebäudemasse als Wärmespeicher Proportional-Integral-Regler Linear quadratischer Regler 5.4.1 Führungsraum Wohnzimmer	el 115 . 120 . 122 . 124 . 125 . 128 . 128
5	Verg eine 5.1 5.2 5.3 5.4	gleich verschiedener Regler der Nutzenübergabe an dem Beispi es Solar-Wärmepumpen-Systems Referenzsimulation Heizkurve 5.2.1 Nutzung der Gebäudemasse als Wärmespeicher Proportional-Integral-Regler Linear quadratischer Regler 5.4.1 Führungsraum Wohnzimmer 5.4.2	el 115 . 120 . 122 . 124 . 125 . 128 . 128 . 128 . 130
5	Verg eine 5.1 5.2 5.3 5.4	gleich verschiedener Regler der Nutzenübergabe an dem Beispies gs Solar-Wärmepumpen-Systems Referenzsimulation Heizkurve 5.2.1 Nutzung der Gebäudemasse als Wärmespeicher Proportional-Integral-Regler Linear quadratischer Regler 5.4.1 Führungsraum Wohnzimmer 5.4.2 Führungsraum Küche 5.4.3 Führungsraum Kinderzimmer Nord-Ost	el 115 . 120 . 122 . 124 . 125 . 128 . 128 . 130 . 131
5	Verg eine 5.1 5.2 5.3 5.4	gleich verschiedener Regler der Nutzenübergabe an dem Beispies Solar-Wärmepumpen-Systems Referenzsimulation Heizkurve 5.2.1 Nutzung der Gebäudemasse als Wärmespeicher Proportional-Integral-Regler Linear quadratischer Regler 5.4.1 Führungsraum Wohnzimmer 5.4.2 Führungsraum Küche 5.4.3 Führungsraum Kinderzimmer Nord-Ost Modellbasierter prädiktiver Regler	el 115 . 120 . 122 . 124 . 125 . 128 . 128 . 130 . 131 . 133
5	Verg eine 5.1 5.2 5.3 5.4 5.5	gleich verschiedener Regler der Nutzenübergabe an dem Beispi es Solar-Wärmepumpen-Systems Referenzsimulation Heizkurve 5.2.1 Nutzung der Gebäudemasse als Wärmespeicher Proportional-Integral-Regler Linear quadratischer Regler 5.4.1 Führungsraum Wohnzimmer 5.4.3 Führungsraum Kinderzimmer Nord-Ost Modellbasierter prädiktiver Regler	el 115 . 120 . 122 . 124 . 125 . 128 . 128 . 128 . 130 . 131 . 133 . 133
5	Verg eine 5.1 5.2 5.3 5.4 5.5	gleich verschiedener Regler der Nutzenübergabe an dem Beispies Solar-Wärmepumpen-Systems Referenzsimulation Heizkurve 5.2.1 Nutzung der Gebäudemasse als Wärmespeicher Proportional-Integral-Regler Linear quadratischer Regler 5.4.1 Führungsraum Wohnzimmer 5.4.2 Führungsraum Küche 5.4.3 Führungsraum Kinderzimmer Nord-Ost 5.5.1 Führungsraum Wohnzimmer 5.5.2 Führungsraum Küche	el 115 . 120 . 122 . 124 . 125 . 128 . 128 . 128 . 130 . 131 . 133 . 134
5	Verg eine 5.1 5.2 5.3 5.4 5.5	gleich verschiedener Regler der Nutzenübergabe an dem Beispi es Solar-Wärmepumpen-Systems Referenzsimulation Heizkurve 5.2.1 Nutzung der Gebäudemasse als Wärmespeicher 5.2.1 Proportional-Integral-Regler Linear quadratischer Regler 5.4.1 Führungsraum Wohnzimmer 5.4.2 Führungsraum Kinderzimmer Nord-Ost Modellbasierter prädiktiver Regler 5.5.1 Führungsraum Küche 5.5.2 Führungsraum Küche 5.5.3 Führungsraum Kinderzimmer Nord-Ost	el 115 . 120 . 122 . 124 . 125 . 128 . 128 . 128 . 128 . 130 . 131 . 133 . 134 . 136

6	Optimierung der Drehzahlregelung der Kollektorlüfter und der Verda		p-
	ferk	reispumpe	143
	6.1	Regelungstechnische Modelle der Ladezustände	144
		6.1.1 Validierung der Gleichungen	148
	6.2	Optimierung des Kreislaufes Eisspeicher, Verdampfer, Kollektor	
		und Pumpe	151
		6.2.1 Simulation	153
	6.3	Zusammenfassung	157
7	Zusa	ammenfassung und Ausblick	159
A	Sche	emen und Diagramme	167
	A.1	Hydraulikschema und Gebäudepläne	167
	A.2	Diagramme	172
B	Ken	nwerte	175
	B.1	Gebäudekennwerte	175
C	Bere	chnungen	179
C.1 Modellierung des Eisspeichers		Modellierung des Eisspeichers	179
		C.1.1 Wärmestrom am Wärmeübertrager und Wärmeverluste des	
		Speichers	182
		C.1.2 Berechnung der Wärmeübertragungsvermögen von den Zo-	
		nenmitten bis an die Zonenränder	184
		C.1.3 Einfügen und Eliminieren von Zonen	189
		C.1.4 Aktualisierung der Zonenzustände	190
	C.2	Funktion Nutzung der Gebäudemasse als Wärmespeicher	193
Li	teratu	irverzeichnis	210
Ał	obild	ungsverzeichnis	214
Ta	belle	nverzeichnis	216

INHALTSVERZEICHNIS

viii

Notation: Die Schreibweise ist an die Notation in [63] angelehnt. Skalare Variablen und Parameter werden kursiv dargestellt. Matrizen werden in fettgedruckten Großbuchstaben geschrieben, Vektoren in klein- und fettgedruckten Buchstaben, die zusätzlich kursiv dargestellt werden. Mittelwerte werden mit einem Querbalken über der Variablen markiert. Ein Punkt über einer Variablen bedeutet die zeitliche Ableitung dieser. Transponierte Matrizen und Vektoren werden mit einem hochgestellten "T" markiert. Autorennamen werden kursiv gedruckt.

Lateinische Buchstaben

Zeichen	Einheit	Bedeutung
∞	_	unendlich
Α	m ²	Fläche
Α	_	Systemmatrix
а	Jahr	
a,b,c,d,e	versch.	Polynomkoeffizienten
b	_	empirischer Parameter (Eisspeichermodell)
a_1	$W/(m^2K)$	linearer Wärmeverlustkoeffizient (Kollektor)
<i>a</i> ₂	$W/\left(m^{2}K^{2} ight)$	quadratischer Wärmeverlustkoeffizient (Kollektor)
b	m ²	Fläche
B , <i>b</i>	_	Steuermatrix(-vektor)
<i>c</i> ₃	$J/K(m^3K)$	Windabhängigkeit der Wärmeverluste (Kollektor)
c4	_	langwellige Einstrahlungsabhängigkeit
		Wärmeverluste (Kollektor)
<i>c</i> ₆	s/m	Windabhängigkeit des optischen
		Wirkungsgrades (Kollektor)
Ср	J/(kgK)	spezifische isobare Wärmekapazität

C_v	J/(kgK)	spezifische isochore Wärmekapazität
$C_{\rm eff}$	$J/(m^2K)$	effektive Wärmekapazität (Kollektor)
C_1	_	Geschwindigkeitskoeffizient (Fensterluftwechsel)
<i>C</i> ₂	$m/(s^2K)$	Temperaturkoeffizient (Fensterluftwechsel)
<i>C</i> ₃	m^2/s^2	Turbulenzkoeffizient (Fensterluftwechsel)
С	_	Ausgangsmatrix
d	m	Durchmesser
Ε	J, kWh	Energie
Ε	_	Dynamikmatrix der Störgrößen
е	J/kg	spezifische innere Energie
е	versch.	Regelabweichung
f	_	Korrekturfaktor (Kollektormodell)
8	m/s^2	Erdbeschleunigung ($g = 9, 81$)
Н	J	Enthalpie
Н	m	lichte Höhe Fenster (Fensterluftwechsel)
h	m	Höhe
h	J/kg	spezifische Enthalpie
Ι	W/m^2	Solareinstrahlung
IAM	—	Winkelkorrekturfaktor
J	_	Gütemaß
k	_	Zeitschritt
Κ		Proportionalbeiwert
L	m	Länge
т	1/m	Rippenparameter
т	kg	Masse
т	_	Exponent der Heizfläche
'n	kg/s	Massenstrom
п	_	Hydraulischer Exponent
п	_	Polytropenexponent
п	1/h	Austauschrate
n_{50}	1/h	Luftwechselrate bei Druckdiff. von 50 Pa
Ν	_	Prädiktionshorizont
р	N/m^2	Druck
р	_	Zeitschritt

Р	J/s	Leistung
Р	_	Proportionalanteil
Q	J	Wärme
Ż	W	Wärmestrom
9	J/kg	bezogene Wärme
ġ	W/(kgs)	bezogener Wärmestrom
Q	_	Gewichtungsmatrix Zustandsgrößen
r	m	Radius
R	K/W	thermischer Widerstand
R	$Pa/(m^3/s)^2$	hydraulischer Widerstand
R , <i>r</i>	_	Gewichtungsgsmatrix(-skalar) Stellgrößen
S	m	Dicke
S	J/K	Entropie
Т	°C	Temperatur
t	S	Zeit
t_N	S	Nachstellzeit
и	versch.	Steuergröße
U	m	Umfang
U	V	Spannung
UA	W/K	Wärmeübertragungsvermögen
V	m ³	Volumen
\dot{V}	m ³ /s	Volumenstrom
Ŵ	W/K	Wärmekapazitätsstrom
x	m	kartesische Koordinate
x	kg/kg	absolute Luftfeuchte
x	_	Zustandsvektor
у	_	Ausgangsvektor
z	_	Störgrößenvektor
z	m	Höhe

Griechische Buchstaben

α	$W/(m^2K)$	Wärmeübergangskoeffizient
β	m/s	Stoffübergangskoeffizient
δ	_	Sicherheitsfaktor

ϵ	_	Wärmeübertragereffektivität
ϵ	Κ	Abbruchkriterium
ζ	_	Druckverlustbeiwert
η	_	Wirkungsgrad
η_0	_	optischer Wirkungsgrad (Kollektor)
Θ	Κ	treibende Temperaturdifferenz (Wärmeübertrager)
Θ_{m}	Κ	mittlere logarithmische Temperaturdifferenz
Θ	_	Durchflussverhältnis (Fensterluftwechsel)
κ	_	Isentropenexponent
κ	W/K	Wärmeübertragungsvermögen
λ	W/(mK)	Wärmeleitfähigkeit
λ	_	Rohrreibungsbeiwert
ν	m^2/s	kinematische Viskosität
μ	K/W	Kehrwert des Wärmekapazitätsstromes (1/Ŵ)
ρ	kg/m ³	Dichte
τ	s	Zeitkonstante
ϕ	%	relative Luftfeuchte

Tief- und Hochgestellte Indizes

0	untere Kondensatorreferenztemp. (WP-Modell)
0	zum Zeitpunkt 0
1	obere Kondensatorreferenztemp. (WP-Modell)
Ар	Aperturfläche
a	außen
akt	aktuell
amb	Ambient
äquiv	äquivalent
Abs	Absorber
aus	Austritt (Wärmeübertrager)
beam	direkt (Strahlung)
с	konstant (engl. constant)
el	elektrisch
D	zeitdiskretisierte Matrix

xii

eff	effektiv
ein	Eintritt (Wärmeübertrager)
eis	Eisspeicher
Е	Ersatz
EH	Elektroheizstab
diff	diffus (Strahlung)
f	fest
fl	flüssig
F	Fenster
Fbh	Fußbodenheizung
K – NO	Kinderzimmer Nord-Ost
ges	gesamt
gl	global (Strahlung)
grenz	Grenzwert
G	Gebäude
h	hydraulisch
Н	Heizung
HX	engl. Heat Exchanger (Wärmeübertrager)
Hzg	Heizung
i	innen
int	integral
j	Laufindex
Κ	Küche
Κ	Kondensator
Ко	Kollektor
Ks	Kombispeicher
1	links
1	langwellig (Strahlung)
lack	Unterdeckung
lat	latent
L	Luft
Lüfter	Lüfter im Hybridkollektor
m	mittel
m	Massenmittelpunkt (Eisspeichermodell)

max	maximal
mech	mechanisch
mess	gemessen
min	minimal
mRb	mit Rippenblech
nzyl	nicht-zylindrisch
Ν	Norm
0	Oberfläche
oRb	ohne Rippenblech
р	parallel
P1	Solarkreispumpe
P2	Heizkreispumpe
P3	Kondensatorkreispumpe
P4	Verdampferkreispumpe
R	rechts
R	Rohr
R	Raum
RA	Raum zu außen
Rb	Rippenblech
Ref	Referenz
Ri	Rippe
Rl	Rücklauf
s	Sättigung
sen	sensibel
schmelz	Schmelzpunkt
sim	simuliert
sol	solar
S	Sole
S	Kombispeicher
S0	Wärmeverlustrate Eisspeicher -> Umgebung
Soll	Sollwert
Sp	Steuerspannung
Su	Sublimation
th	thermisch

xiv

V	Verdampfer
Vl	Vorlauf
W	Wind
W	Wasser
W	Wohnzimmer
WR	Wasser zu Raum
zul	Zuleitung
zyl	zylindrisch
ZH	Zusatzheizung
*	kritisch (Eisspeichermodell)

Dimensionslose Kennzahlen

Le	Lewis – Zahl
NTU	Number of Transfer Units
Nu	Nusselt – Zahl
Pr	Prandtl – Zahl
Re	Reynolds – Zahl

Operatoren, Funktionen und Symbole

Abkürzungen

AAmRb	Anteil Absorber mit Rippenblech
arith.	arithmetisch
akt.	aktuell
B0/W35	Arbeitspunkt: Soleein- 0 °C/ Kondensatoraustritt 35 °C
С	Programmiersprache C
COP	engl. Coefficient Of Performance (Arbeitszahl)
d. h.	das heißt
DGL	Differentialgleichung
DIN	Deutsches Institut für Normung
engl.	Englisch
EnEV	Energieeinsparverordnung
EN	Europäische Norm
ERR	Einzelraumregelung/-regler
FBH	Fußbodenheizung
geg.	gegenüber
GmbH	Gesellschaft mit beschränkter Haftung
IEA	International Energy Agency
ISO	International Organization for Standardization
kap.	Kapazität
Kond.	Kondensator
L.	Luft
PEM	Prediction Error Methode
Р	Regler mit Proportionalanteil
PI	Regler mit Proportional- und Integralanteil
PID	Regler mit Proportional-, Integral- und Differentialanteil
PT1	Verzögerungsglied mit proportionalem Übertragungsverhalten
P1	Solarkreispumpe
P4	Verdampferkreispumpe
Р3	Kondensatorkreispumpe
P2	Heizkreispumpe
proz.	prozentual
SWP	Solar-Wärmepumpe

xvi

temp.	Temperatur
tr.	trockene (Luft)
TRNSYS	Transient System Simulation Program
versch.	verschiedene
VDI	Verein Deutscher Ingenieure
WP	Wärmepumpe
WZ	Wärmezähler
WS	Wärmespeicher
WW	Warmwasser
z. B.	zum Beispiel
ZRM	Zustandsraummodell

Kurzfassung

Die vorliegende Arbeit befasst sich mit der Regelung der Nutzenübergabe in Einfamilienhäusern, der Arbeitspunktoptimierung der Drehzahlregelungen von Verdampferkreispumpe und Kollektorlüfter eines Solar-Wärmepumpen-Systems, sowie mit der Modellierung dieses Systems.

Feldtestuntersuchungen zeigen, dass die Heizkurven und damit auch die Vorlauftemperaturen bei Wärmepumpensystemen oftmals deutlich höher gefahren werden als benötigt. Als Stellgröße zur Regelung der Nutzenübergabe wird deshalb die Vorlauftemperatur des Heizsystems gewählt. Es werden die Heizkurve, ein PI-Regler, ein linear quadratischer und ein modellbasierter prädiktiver Regler (ohne Stellgrößenbeschränkungen) untersucht und miteinander verglichen. Dabei wird speziell auch der Einfluss der Wahl des Führungsraumes für die Regler untersucht. Bewertet werden die resultierenden Energieeffizienzen, wenn vergleichbare Raumtemperaturen realisiert werden. Die Stromeinsparungen durch die Regler werden durch ein detailliertes Simulationsmodell eines Solar-Wärmepumpen-Systems quantifiziert. Die Komfortauswirkungen werden anhand eines 13-Zonen-Gebäudemodells untersucht. Bei geeigneter Wahl des Führungsraumes erweisen sich alle vorgestellten Regler als effizient. Sie unterscheiden sich jedoch signifikant in der Abhängigkeit der Ergebnisse vom Führungsraum.

Der linear quadratische und der modellbasierte prädiktive Regler benötigen zur Auslegung ein Gebäudemodell. Es wird im Wesentlichen ein Modell mit zwei thermischen Speichern und den Eingängen Außentemperatur, Solareinstrahlung und Vorlauftemperatur des Heizsystems näher betrachtet.

Die Verdampferkreispumpe und die Kollektorlüfter sind neben der Wärmepumpe zwei Hauptstromverbraucher des betrachteten Solar-Wärmepumpen-Systems. Gleichzeitig beeinflussen ihre Zustände den Arbeitspunkt und damit die Effizienz der Wärmepumpe. Es wird eine Methode für die Arbeitspunktoptimierung der Verdampferkreispumpe und der Kollektorlüfter vorgestellt. Hierfür werden thermodynamische Modelle für die verschiedenen stationären hydraulischen Ladezustände abgeleitet und validiert. Unter Nutzung dieser Gleichungen werden Optimierungsprobleme definiert, die numerisch in Matlab gelöst werden. Durch Systemsimulationen werden wiederum Einspareffekte quantifiziert.

Abstract

This project deals with the closed loop control of the thermal energy transfer to single-family homes, as well as the optimization of the operating point of the speed control of the evaporator circuit pump and the collector fan of a solar heat pump system and with the modelling of this system. Field test investigations show that the heating curves and as a result also the inlet temperatures of the heating system are often adjusted much higher than required. Therefore, the inlet temperature of the heating system is selected as the control variable for controlling the energy transfer. The heating curve, a PI controller, a linear-quadratic regulator (LQR) and a model predictive controller (MPC, without control variable constraints) are examined and compared with each other. Also the influence, of the particular reference room (in which the temperature signal is measured), is examined. The resulting energy efficiencies are examined under the boundary condition that always comparable room temperatures are achieved. The electrical energy savings by the different regulators are quantified by a detailed simulation model of a solar heat pump system. The consequences on comfort are examined with the help of a 13-zone building model. With a appropriate selection of the reference room, all proposed regulators proof to be efficient. They distinguish however significantly in the dependency of the results of the reference room.

The LQR and the MPC rely on a model for the building. Basically a model with two thermal states and the input signals ambient temperature, solar radiation and inlet fluid temperature of the heating system is evaluated more in detail.

In addition to the heat pump, the evaporator circuit pump and the collector fan are the major consumers of electricity in the solar heat pump system that is under observation. The states of these two components also affect the state of the operating point and thus the efficiency of the heat pump. A method for finding the optimal operating point of the evaporator circuit pump and the collector fan is presented. For this purpose, thermodynamic models for the various steady-state hydraulic loading conditions are derived and validated. Optimization problems are defined with the help of these equations. MATLAB is then used to solve these non-linear optimization problems numerically. Furthermore, the exact energy savings are quantified through system simulations.