Model Order Reduction Based Simulation and Optimization of Large Bore Internal Combustion Engines

Dissertation

zur Erlangung des akademischen Grades

Dr. rer. nat.

eingereicht an der

Mathematisch-Naturwissenschaftlichen Fakultät

der Universität Augsburg

von

Alexander Rieß

Augsburg, July 2014

Referees

Prof. Dr. Ronald H.W. Hoppe, University of Augsburg / University of Houston Prof. Dr. Tatjana Stykel, University of Augsburg Prof. Dr. Gunter Knoll, University of Kassel

Graduation date

14.07.2014

Industriemathematik und Angewandte Mathematik

Alexander Rieß

Model Order Reduction Based Simulation and Optimization of Large Bore Internal Combustion Engines

> Shaker Verlag Aachen 2015

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available in the Internet at http://dnb.d-nb.de.

Zugl.: Augsburg, Univ., Diss., 2014

Copyright Shaker Verlag 2015 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the publishers.

Printed in Germany.

ISBN 978-3-8440-3695-4 ISSN 1615-6390

Shaker Verlag GmbH • P.O. BOX 101818 • D-52018 Aachen Phone: 0049/2407/9596-0 • Telefax: 0049/2407/9596-9 Internet: www.shaker.de • e-mail: info@shaker.de

Abstract

This thesis is intended for computational engineers and mathematicians who work on multibody simulation, model order reduction, tribology and virtual internal combustion engines. Interconnected modules are used within a simulation workflow to describe a large bore internal combustion engine. The modules are responsible for the generation of finite element discretized mechanical models, model order reduction, and the elastohydrodynamic simulation of flexible multibody systems. The theoretical background of the different modules is presented, and it is shown how to connect them to represent an internal combustion engine. To reduce the computational effort, an optimal scheduling of the modules by a genetic algorithm is investigated. Applications of the simulation workflow are discussed for the 4-stroke diesel engine 20V28/33D and the spark ignited 4-stroke gas engine 20V35/44G. Different convergence analyses, numerical experiments, and optimizations are performed. Algorithms and recommendations for an efficient model order reduction and multibody simulation are proposed. This includes an optimal configuration of the integrator, use of the proper orthogonal decomposition method, parameter dependent model order reduction, time varying model order reduction, a proper orthogonal decomposition based wear simulation, and an efficient gradient calculation of the mean friction loss based on the adjoint approach. Finally, two friction loss optimizations of the running-in process and operational stage are performed.

Acknowledgments

This thesis is the result of research at the MAN Diesel & Turbo SE and at the Institute of Mathematics at the University of Augsburg. I am grateful to a number of people who inspired and supported its realization.

First and foremost, I would like to deeply thank my adviser Professor Ronald H. W. Hoppe for his constructive influence on the orientation of this research and his support during those years.

I also wish to thank Professor Tatjana Stykel, Professor Gunter Knoll, and Professor Karl Heinz Borgwardt who agreed to be assessors of this doctoral thesis.

I would like to express my gratitude to Doctor Roland Krivachy for his valuable technical guidance, for interesting and constructive discussions, and his enthusiastic encouragement.

The numerous discussions with Andreas Linke, Andreas Beck, Dietmar Pinkernell, Eckhardt Eisenbeil, and Stefan Roth about the development of internal combustion engines contributed to the improvement of this thesis. I am pleased to acknowledge them.

I am grateful to Sebastian Spengler for his great engineering and programing knowledge that contributed to the realization of the modules and the graphical user interface of the simulation workflow.

Many thanks go to Doctor Richard Schönen for interesting and constructive discussions about multibody simulation and elastohydrodynamic bearing calculations.

I am indebted to Torsten Knoll from the IST company for his support of this thesis by means of research licenses.

I am also grateful to my colleagues at the EED department at MAN Diesel & Turbo SE for their assistance, for the scientific and non-scientific discussions, and for the friendly environment they provided.

Finally, I would like to give my special thanks to my family for their support throughout all the years, my wife Susanne for her love, endless understanding and encouragement, and my friends who also supported me during this period.

Augsburg, July 2014

Alexander Rieß

Contents

Nomenclature v				
1	Intro 1.1	oductio Engine	n es investigated and Basic Principles of Internal Combustion	1
		Engine	es	2
	1.2	Simula	ation and Optimization of Internal Combustion Engines	5
	1.3	Aims a	and Content of this Thesis	7
2	Nun	nerical	Methods	9
	2.1	Multik	body Simulation	9
		2.1.1	System Equations	9
		2.1.2	Connection to Differential Algebraic Equations	11
	2.2	Contir	nuum Mechanics	11
		2.2.1	Equations of Motion	12
		2.2.2	Weak Form	13
		2.2.3	Galerkin Method and Finite Element Method	15
		2.2.4	Models of Damping	16
		2.2.5	Parametrization of Continuum Mechanic Models	17
	2.3	Model	Order Reduction	18
		2.3.1	Approximation by Projection	19
		2.3.2	Model Order Reduction for the Representation of Flexible	
			Bodies	20
		2.3.3	Classical Structural Mechanical Methods	23
		2.3.4	Moment Matching Algorithms / Krylov methods	26
		2.3.5	Balanced Truncation	31
		2.3.6	Proper Orthogonal Decomposition	33
		2.3.7	Hierarchical Model Order Reduction	37
		2.3.8	Time-Varying Model Order Reduction	39
		2.3.9	Parametrized Model Order Reduction	40
		2.3.10	Conclusion	41
	2.4	Hydro	dynamic Models in Multibody Simulation	42
		2.4.1	Averaged Reynolds Equation	42
		2.4.2	Contact Pressure	46
		2.4.3	Bearing Analysis	47
	2.5	Sensit	ivity Calculation	48
		2.5.1	Finite Differences / Divided Differences	49
		252	Automatic Differentiation	50

		2.5.3	Adjoint Approach	51
	2.6	Optim	ization	53
3	Sim	ulation	of Internal Combustion Engines	55
	3.1	Basic I	Principles of Simulation Workflows	56
		3.1.1	Modules	56
		3.1.2	Tasks	56
		3.1.3	Processes and Links	57
	3.2	Proces	s Scheduling	59
	3.3	Schedu	le Calculation by a Genetic Algorithm	61
		3.3.1	Reproduction	62
		3.3.2	Evaluation	65
		3.3.3	Selection	66
	3.4	Simula	ation Workflow of an Internal Combustion Engine	67
		3.4.1	Morphing Module	67
		3.4.2	Measurement Module	67
		3.4.3	Model Order Reduction Modules	69
		3.4.4	Simulation Modules	72
		3.4.5	Process Scheduling Study	75
	3.5	Conclu	usion and Comments on the Implementation	80
4	Арр	lication	IS	83
	4.1	Empir	ical Simulation Speed-Up	85
		4.1.1	Discretization	85
		4.1.2	Integrator Setup	85
		4.1.3	Model Order Reduction	89
		4.1.4	Final Calculation Time	90
		4.1.5	Conclusion	92
	4.2	Proper	r Orthogonal Decomposition for a Connecting Rod Simulation	93
		4.2.1	Construction of the Snapshot Ensemble	93
		4.2.2	Approximation Error of Deformations and Friction Loss	96
		4.2.3	Speed Up	99
		4.2.4	Comparison of a Priori Criteria and a Posteriori Errors for	
			the Choice of the Number of Modes	99
		4.2.5	Conclusion	103
	4.3	Time-	Varying Model Order Reduction for Multibody Simulation . 1	104
		4.3.1	A Time-Varying Model Order Reduction Algorithm 1	105
		4.3.2	Application to a Main Bearing Simulation 1	106
		4.3.3	Comparison of the Time-Varying Model Order Reduction	
			with Proper Orthogonal Decomposition	106
		4.3.4	Conclusion	108
	4.4	Sparse	e Grid Proper Orthogonal Decomposition	109
		4.4.1	Sparse Grid Technique	109
		4.4.2	A Sparse Grid Proper Orthogonal Decomposition Algorithm	112
		443	Application to a Connecting Bod Simulation	112

		$4.4.4 \\ 4.4.5$	Response Surface Generation	117 118
	4.5	Optim	ization of Main Bearing Surfaces for the running-in Process	120
		4.5.1	Non-planar Bearing Surface	120
		4.5.2	Simulation Model and Formulation of the Optimization	
			Problem	120
		4.5.3	Benchmark of Different Optimization Algorithms	122
		4.5.4	Conclusion	123
	4.6	Mean	Friction Loss Sensitivity Calculation of a Main Bearing Sim-	
		ulation	n	124
		4.6.1	Sensitivity Benchmark	124
		4.6.2	Robustness of the Gradient Computation	126
		4.6.3	Mean Friction Loss Sensitivity Study	127
		4.6.4	Conclusion	128
	4.7	Integra	ation of Wear in Multibody Simulations	129
		4.7.1	Wear Model	129
		4.7.2	Wear Model utilizing Proper Orthogonal Decomposition .	130
		4.7.3	Simplified Friction Loss Calculation by means of the P_{α} -	
			method	131
		4.7.4	Application of Different Wear Algorithms for a Main Bear-	100
			ing Simulation	132
		4.7.5	Conclusion	136
	4.8	Crank	shaft and Cranktrain Optimization	142
		4.8.1	Objective Function	142
		4.8.2	Investigated Parameters	143
		4.8.3	Level based Optimization	145
		4.8.4	Constraint Equations	147
		4.8.5	Analysis of the Result	150
		4.8.0	Verification of the Optimization	150
		4.8.7	Conclusion	158
5	Con	clusion	and Outlook	159
Bi	Bibliography 163			

Nomenclature

Abbreviations

ACT	Actuator
AD	Automatic differentiation
ADJ	Adjoint approach for gradient calculation
ATOL	Absolute tolerance
BAX	Axial bearing
BDC	Bottom dead center
BEA	Bearing
BW	Finite backward difference approximation
CA	Crank angle
CAD	Computer aided engineering design
CB	Craig Bampton method
CEN	Finite central difference approximation
CMS	Component mode synthesis method
COU	Coupling
CPU	Central processing unit
CRA	Crank
CRC	Crankcase
CRD	Connecting rod
CRS	Crankshaft
CRT	Cranktrain
DAE	Differential algebraic equation
DOF	Degrees of freedom
EHD	Elastohydrodynamic
EHL	Elastohydrodynamic lubrication
EMBS	Elastic multibody system
FE	Finite elements
FEM	Finite element method
FLW	Flywheel
FMI	Functional mockup interface
FW	Finite forward difference approximation
GA	Genetic algorithm
GUI	Graphical user interface
HYM	Hydrodynamic mesh
JOU	Journal

LTI	Linear time-invariant system
MBS	Multibody system or multibody simulation
MDOF	Master degree of freedom
MEA	Measurement
MIMO	Multi-input-multi-output
MOR	Model order reduction
MPH	Morphing
ODE	Ordinary differential equation
PAR	Principal axis reduction
PMOR	Parametrized model order reduction
POD	Proper orthogonal decomposition (method)
PODPARS	Proper orthogonal decomposition based on PAR simulation
RBE-2	Rigid body element type 2 (rigid behavior)
RBE-3	Rigid body element type 3 (elastic behavior)
RCPSP	Resource-constrained project scheduling problem
RED	Reduction
RPM	Rotations per minute
RTOL	Relative tolerance
RUN	Running surface of a bearing
SGPOD	Sparse grid proper orthogonal decomposition
SIM	Simulation
SISO	Single-input-single-output
STM	Structural mesh
SVD	Singular value decomposition
TDC	Top dead center
TDC (fire)	Top dead center fire
TRA	Transient approach for gradient calculation
TVD	Torsional vibration damper
VMOR	Time varying model order reduction
WC	Working cycle which has the length of 720° for 4-stroke engines
ZWA	Flexible position data of a body
ZWB	Flexible acceleration data of a body
ZWG	Flexible velocity data of a body
ZWS	Rigid body position, velocity and acceleration data
Roman Sym	bols
A	Contact area
A	System matrix within an LTI
В	System matrix within an LTI
b	Force density
B_2	Input matrix of a second order system
C	System matrix within an LTI
С	Constraint within an optimization
C_1, C_2	Output matrix of a second order system

C_j	Completion time of the module M_j within a process P
CCOU	Stiffness property of the coupling
c_{TVD}	Stiffness property of the torsional vibration damper
C_{max}	Execution time of a process P
D	Diameter
ΔD	Absolute diametrical clearance
D	Diagonal matrix of the weights α_i
D_e	Damping system matrix
E	Precedence constraints of a process
E	System matrix within an LTI
E	Young's modulus
E_c	Effective modulus of elasticity
F	Applied force on a body
F	Parameter-dependent DAE system
f	Applied force
f	Density function (statistical or empirical)
f	Frequency
f_1	Force of a bearing in vertical direction
f_2	Force of a bearing in horizontal direction
F_e	Applied force vector acting on a flexible body
F_m	Force vector on the master degrees of freedom x_m
F_N	Normal load
F_s	Force vector on the slave degrees of freedom x_s
F_{ce}	Centrifugal force acting on a body
F_{co}	Coriolis force acting on a body
F_{gy}	Gyroscopic force acting on a body
G	Jacobian matrix of the constraint vector g
G	Objective function (integral based)
g	Objective function
g	Vector of holonomic constraints
GEN	Number of generations within a GA
gen	Generation of a population within a GA
H	Hardness of a material
H	Hilbert space
H	Transfer function
h	Local film thickness
h_{-}	Wear depth
h	Average local gap
h^*	Nominal film thickness
H^m	Sobolev space
H_k	Hierarchical sampling of level k
h_{min}	Minimum gap
Ι	Time interval $I = [t_0, t_f]$

i	Index
I	Identity matrix
I_c	Set of constraints
i_i	Input vector of the module M_i
i _{max}	Termination condition of an optimization:
	Maximum number of iterations
J	Weighted projection error
j	Index or see M_j
K	Constant within the Greenwood and Tripp contact model
K	Set of renewable resources
K	Wear coefficient
k	Index or a renewable resource
K_e	Stiffness system matrix
l	Number of basis vectors within a reduction method
L^2	Function space of quadratically integrable functions
L_j, l_j	Link with an l_j :1 relation
l_H	Number of steps in a hierarchical reduction
M	Mass matrix
M_e	Mass system matrix
M_j	Module
m_j	Dimension of the output vector of the module M_j
N	Spatial location of a node
N_0	Initial spatial location of a node
n_c	Number of constraints of an optimization
n_e	Dimension of the finite subspace V^n used for discretization
n_g	Number of constraints of a DAE
n_j	Dimension of the input vector of the module M_j
n_p	Dimension of a parameter p
n_s	Nominal speed of an engine
n_u	Dimension of an input of a system
n_v	Number of constraint violations
n_w	Dimension of a state π
n_x	Dimension of an output of a system
n_y	Dimension of a state z
n_z	Spatial dimension of a domain
n. <u>0</u>	number of calculated schedules
0.	Output vector of the module $M_{\rm c}$
P	Friction loss
P	Process which couples modules J with links L
- p	Parameter within the parameter space \mathbb{R}^{n_p}
p	Pressure
$\dot{\bar{P}}$	Mean friction loss

\bar{p}	Specific load
P_i	Input power of an engine
p_l	Lower bound vector of the box constraint of an optimization
p_m	GA parameter: mutation rate
P_o	Output power of an engine
P_r	Friction loss of an engine
p_r	GA parameter: random selection
p_u	Upper bound vector of the box constraint of an optimization
P_{α}	Approximation of the wear friction loss
P_{wear}	Friction loss that takes wear into account
P_{co}	Contact friction loss
p_{co}	Contact pressure
P_{hy}	Hydrodynamic friction loss
p_{hy}	Hydrodynamic pressure
p_{max}	Maximum pressure
POP	Size of a population within a GA
Q	Schedule of a process, defining the execution order of modules
q	Generalized coordinate of a reduced system
r	Correction term / residual
r	Relative convergence value
R_k	Number of available units of the resource k
r_{jk}	Number of required resource k of the module M_j
S	Safety factor
s	Sliding distance during contact
s	Speed-up between one approach and its reference concerning CPU
	time or number of function calls
S_i	Shape vector used for morphing
S_j	Start time of the module M_j within a process P
T	Period length
T	Task
T	Temperature of a bearing at the inlet
t	Time t within the time interval $I = [t_0, t_f]$
t_0	Start time t_0 of the time interval $I = [t_0, t_f]$
t_f	Final time t_f of the time interval $I = [t_0, t_f]$
t_j	Execution time of the module M_j
T^j_σ	Moment of a transfer function H
T_{ij}	Transformation matrix between two states x_i and x_j
u	Input of a system
u	Local deformation of an elastic structure
u	Surface velocity within the Reynolds Equation
\mathbf{U}	Unitary matrix within a SVD
u_i	i-th left singular vector of U
V	Projection matrix within the Petrov-Galerkin projection

V	Wear volume
v	Intermediate variable within a DAE
v	Surface velocity within the Reynolds Equation
\mathbf{V}	Unitary matrix within a SVD
V^h	Finite subspace of V
v_i	<i>i</i> -th right singular vector of \mathbf{V}
$V_{k}^{(1)}$	Sparse grid of level k
$V_k^{(\infty)}$	Full grid of level k
Ŵ	Projection matrix within the Petrov-Galerkin projection
W	Width
\mathbf{W}	Weight matrix in the norm $\langle u, v \rangle_{\mathbf{W}}$
$W^{m,2}$	Sobolev space
W_{α}	Multi-dimensional sampling used for sparse grids
W_k	Sampling used for sparse grids
X	Snapshot matrix
x	State variable of a second order system
x_0	Initial condition of a state x within an ODE
x_i	Data vector (column) of a snapshot matrix X
x_m	Master degrees of freedom within a state x
x_s	Slave degrees of freedom within a state x
x_1	Lower bound of a box constrained space
$x_{\rm u}$	Upper bound of a box constrained space
$X_{x,\dot{x},\ddot{x}}$	Snapshot matrix which includes the data x , \dot{x} , and \ddot{x}
$X_{x,\dot{x}}$	Snapshot matrix which includes the data x and \dot{x}
X_x	Snapshot matrix which includes the data x
y	Output of a system
Ζ	Non-singular matrix used for the description of translations and
	rotations
<i>z</i>	State variable of a first order system
z_0	Initial condition of a state z within a DOE
Greek Symb	OIS
a	Factor of the mass matrix within Rayleign damping
a	Weight of the P method
ß	Factor of the stiffness matrix within Bayleigh damping
p γ	Indicator function used for VMOB
$\frac{\lambda}{\delta t}$	Integrator output increment
δ	Combined roughness of two surfaces
δ	Boughness amplitude of surface i
ε.	Heuristic information
ε	Linearized strain tensor
69	Squared heuristic information
- <u>-</u>	Tolerance for a constraint to define its state
~c	

ϵ_h	Absolute local contour error
$\ \epsilon_h\ $	Maximum contour error
ϵ_{p}	Perturbation in finite differences
$\epsilon_{2,\Delta}$	Square root of the error of the heuristic information ϵ_2
ϵ_{γ}	Threshold within VMOR
ϵ_{Δ}	Error of the heuristic information ϵ
ϵ_{σ}	Weighted singular value
$\epsilon_{*,f}$	Termination condition of an optimization: ATOL or RTOL for the target function
$\epsilon_{*,p}$	Termination condition of an optimization: ATOL or RTOL for the parameters
$\bar{\epsilon}_P$	Mean friction loss error
$\overline{\epsilon}_{P \max}$	Overall maximum error of $\bar{\epsilon}_P$
ϵ_P	Local relative friction loss error
ϵ_r	Tolerance for the relative convergence value
η	Dynamic lubricant viscosity
η	Efficiency
Г	A d γ -measurable subset of $\partial \Omega$
γ	Outer normal vector of Ω
λ	Lagrange multiplier
λ	Lamé constant within Young's modulus E and Poisson's ratio ν
λ	Wear coefficient
μ	Lamé constant within Young's modulus E and Poisson's ratio ν
μ	Parameter mean within a normal distribution
μ_c	Coefficient of friction
ν	Poisson's ratio
Ω	Spatial domain
ω	Angular velocity
$\Omega_{0,1}$	Unit box constraint space
Ω_{Γ}	A representative domain of the bearing edges
$\Omega_{l,u}$	Box constraint space
ω_j	Eigenfrequency of a system
Φ	Finite basis of the finite subspace V^h
Φ_i	Basis vector of the finite subspace V^h
ϕ_i	Mode shape
Φ_{kl}^p	Pressure flow tensor
Φ^s_{kl}	Shear flow tensor
Ψ	Relative clearance
ψ	Orthonormal basis vector of \mathcal{V}^l
ψ_i	Orthonormal vector of POD basis
ρ	Density
Σ	Diagonal matrix of singular values σ_i
Σ	Finite-dimensional dynamical system

σ	Cauchy stress tensor
σ	Expansion point of a moment T^j_{σ}
σ	Parameter standard deviation within a normal distribution
σ	Statistical parameter root mean square
σ_i	<i>i</i> -th singular value
σ_i	Hankel singular value
au	Surface stress
θ	Active basis index within VMOR
Φ_i	Eigenmode of a system
Mathematic	al Symbols
-	Mean operator
$\Delta[\cdot]$	Difference of $[\cdot]$ compared to its initial state $[\cdot]_0$
δ_{ij}	Kronecker symbol
Ŷ	Approximation operator
\mathbb{P}	Parameter space of an optimization problem
$\mathcal{C}^k(I)$	Class of k times continuously differentiable functions with respect
	to time
${\mathcal F}$	Fundamental solution matrix
\mathcal{I}	Population of a GA
\mathcal{K}_{j}	Krylov subspace
\mathcal{K}_{j}^{2}	Second-order Krylov subspace
\mathcal{L}^{\dagger}	Laplace transformation
$\mathcal{L}(\psi, \lambda)$	Lagrange functional of an optimization problem
\mathcal{M}^k	Set of vertices $(k = 0)$, edges $(k = 1)$, faces $(k = 2)$, and the
	primary topological elements $(k = 3)$
\mathcal{N}	Function used for mesh morphing
\mathcal{P}	Controllability Gramian
\mathcal{Q}	Set of feasible schedules
\mathcal{Q}	Observability Gramian
\mathcal{T}	Topology of a mesh
\mathcal{V}	Space spanned by a data vector x
\mathcal{V}	Subspace spanned by the projection matrix V
\mathcal{W}	Subspace spanned by the projection matrix W
9	Individual daughter generated by crossover within a GA
f	Individual father used in crossover within a GA
i	Individual within a GA
m	Individual mother used in crossover within a GA
\$ 	Individual son generated by crossover within a GA
∇f	Gradient of a function f
$\{\cdot\} _{\xi}$	Notation of restriction (i.e. $\{a+b\} _{\xi}$ is the short form of $a_{\xi}+b_{\xi}$)