IGBT-based High Voltage to Low Voltage DC/DC Converter for Electric and Hybrid Vehicles

Von der Fakultät für Elektrotechnik und Informationstechnik der Universität der Bundeswehr München

zur Erlangung des akademischen Grades eines
Doktor-Ingenieur
(Dr.-Ing.)

genehmigte Dissertation
von
M. Sc. Sandra Zeljkovic

der Bundeswehr
 Universität 浣 München

Neubiberg

Vorsitzender: Prof. Dr. Berthold Lankl

1. Berichterstatter: Prof. Dr.-Ing. Dieter Gerling
2. Berichterstatter: Prof. Dr. rer. nat. Ludwig Brabetz

Forschungsberichte Elektrische Antriebstechnik und Aktorik

Band 16

Sandra Zeljkovic

IGBT-based High Voltage to Low Voltage DC/DC Converter for Electric and Hybrid Vehicles

Shaker Verlag
Aachen 2015

Bibliographic information published by the Deutsche Nationalbibliothek The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available in the Internet at http://dnb.d-nb.de.

Zugl.: München, Univ. der Bundeswehr, Diss., 2015

Copyright Shaker Verlag 2015
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the publishers.

Printed in Germany.

ISBN 978-3-8440-3721-0
ISSN 1863-0707

Shaker Verlag GmbH • P.O. BOX 101818 • D-52018 Aachen
Phone: 0049/2407/9596-0 • Telefax: 0049/2407/9596-9
Internet: www.shaker.de • e-mail: info@shaker.de

Abstract

The subject of this thesis is a high voltage (HV) to low voltage (LV) DC/DC converter in hybrid (HEVs) and electric vehicles (EVs). The focus is on use of an IGBT-based zero voltage transition (ZVT) phase shift (PS) full bridge (FB) topology for this application. Not only the high switching frequency is a challenge when designing the IGBT-based ZVT PS FB converter, but also the wide input voltage range and wide range of load currents during operation of the converter pose additional difficulty for its design and operation. In order to use the available energy of the HV battery of (H)EVs more efficiently, cost-effective loss reduction is one of the main objectives in the development of automotive HV to LV DC/DC converters, and therefore the significant portion of this work is focused in that direction.
The research starts with the question if improved, trench fieldstop IGBT switches with tailless behavior, optimized for high frequency switching ('high speed' IGBTs), have potential to substitute superjunction MOSFETs that are nowadays commonly used at HV-side of the $\mathrm{DC} / \mathrm{DC}$ converter at switching frequency of 100 kHz . The efficiency of the IGBT-based converter is analyzed in detail in order to identify the most critical loss mechanisms and to propose efficiency improvement methods accordingly. Furthermore, one of the issues due to the required wide input and output voltage range is the voltage overshoot during turn-off of rectifier switches. A model is developed and experimentally validated for three different rectifier topologies to simulate turn-off voltage waveforms. Based on this model, the choice of the rectifier and its impact on the overall converter operation is discussed. In addition, design considerations to improve efficiency of the ZVT PS FB converter that were successfully applied in MOSFET-based designs are analyzed in the converter designed with 'high speed' IGBTs. The focus is on use of an external inductor to eliminate turn-on losses in the lagging leg of the HV side H bridge, and capacitive snubbers to reduce the turn-off losses. The effect of such additional components on switching losses of IGBTs and overall converter efficiency is analyzed. The results showed that the advantage of modern IGBTs over superjunction MOSFETs and older IGBT technologies is their optimal performance without external inductive and capacitive components. Thanks to their reduced turn-off losses, and at the same time low turn-on losses, the loss of ZVT in the lagging leg is not anymore critical to converter's efficiency. Since the investigated approaches are not efficient in IGBT-based ZVT PS FB in (H)EVs, and different approaches had to be developed to further improve the efficiency.

Finally, to offer a solution for the problem of reduced efficiency due to the wide input voltage range, a new efficiency optimized single-stage reconfigurable topology is proposed. The proposed topology solves the problem of reduced converter efficiency in the upper range of HV battery voltages by adapting the transformer turns ratio depending on the input voltage. The topology is based on the ZVT PS FB converter that is during its operation, depending on the instantaneous value of battery voltage, reconfigured into a push-pull converter. The ZVT PS FB - the more efficient configuration covers upper range of input voltages whereas the hard-switching push-pull - the less efficient configuration covers the lower, less significant range. The ZVT PS configuration, due to tighter voltage range and more suitable transformer turns ratio, operates with reduced turn-off losses, significantly decreased circulating current in the freewheeling period as well as improved efficiency of the rectifier stage. The point of reconfiguration is chosen to maximize the average efficiency according to the histogram of HV battery voltage during a typical driving cycle. The proposed reconfiguration principle is
also applicable to the rectifier stage at the LV side of the same converter. Operation of the proposed converter and the efficiency improvement are validated experimentally.

Acknowledgments

First of all, I want to express my sincere thanks to Prof. Dr.-Ing. Dieter Gerling, for the opportunity to perform my Ph.D. research under his supervision at Chair of Electrical Drives and Automation, University of Federal Defense Munich, as well as for his strong support that made the completion of this thesis possible. Furthermore, I want to express my gratitude to Prof. Dr. rer. nat. Ludwig Brabetz for kindly accepting the role of co-examiner during my Ph.D. examination and for his efforts in evaluating my thesis. I also want to thank Prof. Dr.Ing. Berthold Lankl for taking over the role of the committee chair. Additionally, I would like to thank Dr.-Ing. Hans-Joachim Köbler for his appreciated organizational support.
Many thanks go to Dr.-Ing. Tomas Reiter from Infineon Technologies for his continuous guidance, genuine interest in my research, numerous valuable ideas and fruitful discussions. I also take this opportunity to express my gratitude to Dr.-Ing. Dusan Graovac for his support and help during the period of my PhD studies. I am also grateful to Electric Drive Train group at Infineon Technologies (especially Application Engineering team led by Dr.-Ing. Carlos Castro) for the opportunity and support they provided me to perform this Ph.D. research. Furthermore, I am also thankful to my colleagues from Automotive System Engineering group at Infineon Technologies for their support, interest and valuable comments regarding my work.

Finally, I would like to express the gratitude to my parents, my brother and particularly Vedran, for their unconditional support and understanding during the period of my education.

Contents

List of Figures vii
List of Tables xvii
1 Introduction 1
1.1 Background 1
1.1.1 Role of HV to LV DC/DC Converter in (H)EVs 1
1.1.2 Converter Specification 2
1.1.3 Converter Topology 4
1.2 Motivation 7
1.2.1 Application of Modern IGBT Technologies at High Switching Fre- quencies 7
1.2.2 Operation of DC/DC Converter in Wide Input Voltage Range Conditions 9
1.3 Thesis Objectives, Contribution and Organization 10
2 IGBT-based ZVT Phase Shift Converter 15
2.1 Application of 'High Speed' IGBTs at Switching Frequencies in Range of 100 kHz 15
2.1.1 Turn-off Switching Characteristic and Energy Losses 16
2.1.2 Output Characteristic 19
2.1.3 Output Capacitance and Energy of ZVT Transition 20
2.1.4 Turn-on and Hard Diode Commutation 21
2.1.5 Summary 23
2.2 Zero Voltage Transition Phase Shift DC/DC Converter 24
2.2.1 Operation Principle 24
2.2.2 Loss Modeling and Analysis 27
2.2.2.1 Loss Model Parameterization and Parameters' Temper- ature Dependence 28
2.2.2.2 Power Losses and Efficiency: Experimental Measure- ments and Model Validation 34
2.2.2.3 Loss Distribution in Prototype Converter 35
2.3 Rectifier Topology Selection 39
2.3.1 Design Parameters and Operation Principle of Different Rectifier Topologies 40
2.3.2 Rectifier Overvoltage Peaks 44
2.3.3 Predictive Model of Rectifier Overvoltage Peaks and Experimen- tal Validation 44
2.3.4 Model Verification and Discussion 48
2.3.5 Efficiency Comparison 50
2.4 Summary 53
3 Switching Behavior of 'High Speed' IGBTs in ZVT Phase Shift Con- verter 55
3.1 Effect of Capacitive Snubbers on IGBT's Turn-off Losses in the Leading Leg 57
3.1.1 Experimental Results 59
3.1.2 Analysis of Tail Bump of 'High Speed' IGBTs Caused by $C_{e x t}$ 59
3.1.3 Effect on Efficiency 63
3.2 Effect of External Inductor on IGBT's Switching Losses in Lagging Leg 64
3.2.1 Zero Voltage Transition in Lagging Leg 64
3.2.2 Turn-On Losses in Lagging Leg Transition 66
3.2.3 Turn-Off Losses in Lagging Leg Transition 69
3.2.4 Conduction Losses in Freewheeling 72
3.2.5 Effect on Efficiency 72
3.3 Summary 73
4 Single-Stage Reconfigurable ZVT Phase Shift Converter Optimized for Wide Input Voltage Range Operation 77
4.1 Operating Voltages of HV Battery 78
4.1.1 Battery Electric Vehicles 79
4.1.2 Plug-in Hybrid Electric Vehicles 79
4.2 Proposed Reconfigurable Topologies 81
4.3 Implementation of Proposed Topologies 83
4.3.1 Reconfiguration at LV Side 83
4.3.2 Reconfiguration at HV Side 85
4.4 Model-based Evaluation of Potential for Efficiency Improvement 86
4.5 Design Procedure for Proposed HV-side Reconfigurable Converters for Operation in BEVs 91
4.6 Experimental Validation of HV-Side Reconfigurable Converter 93
4.7 Discussion 96
4.7.1 Loss Reduction at Turn-off and in Freewheeling Period 96
4.7.2 Choice of Rectifier Switches 99
4.7.3 Losses in Passive Components 101
4.7.4 Operation of Push-pull Configuration 102
4.7.5 Potential for Further Improvements 103
4.8 Summary 104
5 Conclusion 107
6 Appendices 111
6.1 Loss Modeling of ZVT Phase Shift Full Bridge DC/DC Converter 111
6.1.1 Losses of HV-side Switches 111
6.1.2 Losses in LV-side Rectifier 116
6.1.3 Losses in Power Transformer and Output Filter 119
6.1.4 Losses in LV-side Printed Circuit Board 120
6.2 Loss Modeling of Push-pull DC/DC Converter 121
6.2.1 Losses in HV-side Switching Components 121
6.2.2 Losses in LV-side rectifier 124
6.2.3 Losses in Power Transformer, Output Filter and in Printed Cir- cuit Board at LV Side 126
6.3 Description of Converter Prototype 126
6.3.1 Phase Shift Full Bridge DC/DC Converter 126
6.3.2 Reconfigurable Converter 126
References 129

List of Figures

1.1 Supply system of 14 V power net in (a) conventional ICE driven vehicles and (b) in (H)EVs 2
1.2 ZVT PS FB DC/DC topology for (H)EVs. 5
1.3 Simplified block diagram of HV to LV DC/DC converter. 6
2.1 Pulse test-setup (single/double) used for characterization of IGBT(MOSFET) switches. 16
2.2 Turn-off switching waveforms at $25 \mathrm{~A}, 300 \mathrm{~V}$ at $T_{j}=150^{\circ} \mathrm{C}$ of (a) high voltage MOSFET, (b) standard trench fieldstop IGBT and (c) 'high speed' IGBT. 17
2.3 Measured turn-off energy losses as a function of collector (drain) current for 'high speed' IGBT and high voltage MOSFET at (a) $T_{j}=25^{\circ} \mathrm{C}$ and (b) $T_{j}=150^{\circ} \mathrm{C}$ at $200 \mathrm{~V}, 300 \mathrm{~V}$ and 400 V turn-off voltage. 18
2.4 Output characteristic of 'high speed' IGBT 3 and high voltage MOSFET at (a) $T_{j}=25^{\circ} \mathrm{C}$ and (b) $T_{j}=150^{\circ} \mathrm{C}$. 19
2.5 Standard experimental setup for $C_{\text {oss }}$ measurement. 20
2.6 Proposed experimental setup used to estimate the energy required to achieve ZVT in one leg of H -bridge. 21
2.7 Waveforms measured in proposed setup for ZVT energy estimation: green trace - $V_{g e}$, violet trace - $I_{L_{a u x}}$, brown trace - $V_{c e}$, yellow - cal- culated required energy. 22
2.8 (a) Estimated energy required for ZVT in one leg. (b) Estimated tran- sition times. 23
2.9 Waveforms of hard diode commutation of (a) 'rapid emitter controlled'
diode antiparallel to 'high speed' IGBT and (b) fast recovery body diode
of HV MOSFET. Operating point: $I_{c, \text { turnoff }}=25 \mathrm{~A}, V_{i n}=300 \mathrm{~V} \ldots .2$
2.10 Operating states of ZVT PS FB converter from Fig. 1.2 with active Hbridge rectifier: (a) power transfer (positive magnetization of the transformer core) (b) leading leg transition (c) freewheeling period and (d) lagging leg transition. The power flow in each domain of one half of T_{s} is presented with dotted line. In the other half of T_{s}, the order of the operating states is the same, except the fact that the transformer core is magnetized in the opposite direction so that the corresponding switches conduct.

2.11 (a) Transformer primary winding current, (b) voltages over synchronous
rectifiers (SRs), (c) currents of SRs and (d) switching patterns for pri
mary and secondary switches.

2.12 Estimation of junction temperature T_{j} of the switches in HV-side H
bridge in the steady state operation: (a) switch S_{1} (symmetric to S_{3}), (b)
switch S_{2} (symmetric to S_{4}), and (c) freewheeling diode D_{2} (symmetric
to D_{4}, while diodes D_{1} and D_{3} do not conduct current during normal
operation).

2.13 Temperature dependence of $r_{d s, o n}$ of 80 V MOSFET (IPB019N08N3 G)
used in the rectifier of the converter prototype. The data presented are
provided in the manufacturer data sheet 31
2.14 Core losses as a function of the core temperature and applied flux density
for the transformer core described in Section 2.2.2.1 (characterization
data provided by the manufacturer, obtained with the sinusiodal voltage
excitation of 100 kHz , where the given flux density corresponds to the
peak flux density). 32

2.15 Efficiency of 'high speed' IGBT-based converter over the range of input
voltages $(200 \mathrm{~V}, 275 \mathrm{~V}$ and 350 V$)$. Efficency curves obtained from pro
totype measurements are in solid line, and calculated data are presented
by markers.
2.16 Loss distribution over HV-side switches, LV-side switches and passives based on the parameterized loss model for: (a) $V_{i n}=200 \mathrm{~V}$ (b) $V_{i n}=$ 275 V (c) $V_{\text {in }}=350 \mathrm{~V}$. Losses are presented cumulatively (stacked area chart) and their sum is compared to the percentage of total losses ob- tained experimentally. 36
2.17 Comparison of power losses at three different $V_{i n}$ values $(200 \mathrm{~V}, 275 \mathrm{~V}$ and 350 V): (a) losses at HV-side switches (b) losses at LV-side switches and (c) losses at passives (transformer, LC filter, PCB). Losses are presented one beside the other so that their difference is clearly visible (layered area chart). 37
2.18 Distribution of losses on HV-side switches (conduction losses of IGBTs, diodes and switching losses of IGBTs) for: (a) $V_{i n}=200 \mathrm{~V}$ (b) $V_{i n}=$ 275 V (c) $V_{\text {in }}=350 \mathrm{~V}$. Losses are presented cumulatively (stacked area chart). 38
2.19 Distribution of losses caused by passive components and LV-side switches in the converter at $V_{\text {in }}=275 \mathrm{~V}$. These losses are nearly independent on $V_{i n}$. Losses are presented cumulatively (stacked area chart). 39
2.20 Investigated rectifier topologies: (a) full wave rectifier (b) bridge rectifier and (c) current doubler. 40
2.21 Simulated current waveforms in: (a) full wave rectifier (b) bridge rectifier and (c) current doubler. $I_{C_{o u t}}$ is the current in the filter capacitor, $I_{t r, s e c}$ is the current in secondary winding, $I_{t r, p r i m}$ is the current in secondary winding and $I_{S R 1} / I_{S R 2}$ are currents of LV-side MOSFETs. 42
2.22 Dependence of $R_{d s, o n}$ on $V_{b r}$ of Infineon's OptiMOS ${ }^{T M}$ family in a D2PAK package (source : www.infineon.com, released product, Octo- ber 2011). 43
2.23 Functional (left) and equivalent (right) circuit of (a) full wave rectifier (b) bridge rectifier and (c) current doubler during the turn-off transition of one switch. 45
2.24 Mathematical model of rectifier switch transition from conducting to non-conducting state. 46
2.25 Simulation of voltage overshoot waveforms for three different rectifier topologies at (a) $V_{i n}=200 \mathrm{~V}$ and (b) $V_{i n}=400 \mathrm{~V}$. 48
2.26 Dependency of voltage overshoot on $C_{o s s}$ and $L_{\text {leak }}$: (a) trend of $V_{C_{o s s, \max }}$and (b)trend of $f_{\text {osc }}$. Steady state blocking voltage is assumed to be 40 V .49
2.27 Experimental verification of the model of voltage overshoot for (a) full wave rectifier ($200 \mathrm{~V} 8: 1: 1$) (b) current doubler ($200 \mathrm{~V} 7: 1$) and (c) full bridge rectifier (200 V 8:1) 50
2.28 The comparison of efficiency of ZVT PS converter with the full wave rectifier to the full bridge rectifier at (a) 160 V and (b) 300 V 52
3.1 ZVT PS FB DC/DC converter with additional components for efficiency improvement: external inductor $L_{e x t}$ in the lagging leg and external capacitors $C_{e x t}$ in the leading leg. 57
3.2 Illustration of turn-off event of a MOSFET in the leading leg (a) without capacitive snubber compared to (b) the case with capacitive snubber (The same behavior assumed for tailless 'high speed' IGBTs.). 58
3.3 Leading leg turn-off transition in reference to the rest of T_{s}. 59
3.4 Measured turn-off waveforms of 'high speed' IGBT for three different values of $C_{e x t} @ T_{v j}=25^{\circ} \mathrm{C}$: left side - $V_{i n}=200 \mathrm{~V}, I_{c, \text { turn-off }}=10 \mathrm{~A}$, right side - $V_{i n}=200 \mathrm{~V}, I_{c, t u r n-o f f}=20 \mathrm{~A}$, (a) no $C_{\text {ext }}$, (b) $C_{e x t}=$ $500 p F$, (c) $C_{e x t}=2 n F$, and (d) turn-off loss energy $E_{o f f}$. 60
3.5 Comparison of the tail current and turn-off loss energies of 'high speed' IGBT for (a) $T_{v j}=25^{\circ} \mathrm{C}$ and (b) $T_{v j}=150^{\circ}$. Operating point: $I_{c, \text { turnoff }}=25 \mathrm{~A}, V_{\text {in }}=300 \mathrm{~V}$, no $C_{\text {ext }}$ applied. 61
3.6 Turn-off of IGBT switch with (a) $C_{e x t}=500 \mathrm{pF}$ at $T_{v j}=25^{\circ} \mathrm{C}$, (b) $C_{e x t}=500 p F$ at $T_{v j}=150^{\circ} \mathrm{C}$, (c) comparison of $E_{o f f}$ with $C_{e x t}=$ 500 pF for two different $T_{v j}$, (d) $C_{e x t}=2 n F$ at $T_{v j}=25^{\circ} C$, (f) $C_{e x t}=$ $2 n F$ at $T_{v j}=150^{\circ} \mathrm{C}$, and (e) comparison of $E_{o f f}$ with $C_{e x t}=2 n F$ for two different $T_{v j}$. Operating point: $I_{c, \text { turnoff }}=10 \mathrm{~A}, V_{i n}=200 \mathrm{~V}$ 62
3.7 Phases in the turn-off of 'high speed' IGBT with parallel capacitor when a bump in the tail current occurs (illustration). 63
3.8 Efficiency comparison (at $T_{h}=25^{\circ} \mathrm{C}$, auxiliary supply $\approx 8 \mathrm{~W}$ const. not included) without capacitive snubber and with two values of capacitive snubber $\left(C_{e x t}=2 n F\right.$ and $\left.C_{e x t}=500 p F\right)$ at (a) $V_{i n}=200 V$ and (b) $V_{\text {in }}=300 \mathrm{~V} . I_{\text {load }}$ of 150 A corresponds to the $I_{c, \text { turn-off }}$ of 20 A , and $I_{\text {load }}$ of 75 A corresponds to the $I_{c, \text { turn-off }}$ of 10 A .
3.9 Lagging leg transition in reference to the rest of T_{s}
3.10 Turn-on of the switch in the lagging leg when ZVT is achieved (gate voltage occurs when $V_{c e}$ is already 0 V , operating point: $V_{i n}=200 \mathrm{~V}$, $\left.I_{\text {out }}=115 \mathrm{~A}, L_{\text {ext }}=2.2 \mu H, L_{\text {leak }}=1.3 \mu H\right)$.
3.11 Turn-on of the switch in the lagging leg when ZVT is not achieved (gate voltage occurs while $V_{c e}$ is equal to $V_{i n}$, operating point: $V_{i n}=200 \mathrm{~V}$, $I_{\text {out }}=115 \mathrm{~A}, L_{\text {ext }}=0 \mu H, L_{\text {leak }}=1.3 \mu \mathrm{H}$.
3.12 Turn-off of the switch in lagging leg when ZVT is not achieved. Operating point: $V_{\text {in }}=200 \mathrm{~V}, I_{\text {out }}=115 \mathrm{~A}, L_{\text {ext }}=0 \mu H, L_{\text {leak }}=1.3 \mu H$. Red trace is the voltage over the switch that turns off, and blue trace is the current of the primary transformer winding that charges/discharges the capacitances of the lagging leg (thus it does not correspond to the switch current)
3.13 Primary winding current during the lagging leg transition when $L_{e x t}=$ $2.2 \mu H$ applied in addition to $L_{\text {leak }}=1.3 \mu H$ of primary winding (black trace) and when no $L_{e x t}$ applied so that only $L_{\text {leak }}$ is present during transition (blue trace). Operating point: $V_{i n}=200 V, I_{\text {Lout }}=115 \mathrm{~A}$, $L_{\text {ext }}=0 \mu H, L_{\text {leak }}=1.3 \mu H$
3.14 (a) Currents $I_{c, t u r n-o f f}$ with ZVT achieved (dotted line) and ZVT not achieved (solid line) at $V_{\text {in }}=200 \mathrm{~V}$ (markers - calculated, lines - measured). (b) Voltages $V_{c e, t u r n-o f f}$ of S_{1} at $V_{i n}=200 \mathrm{~V}$ when ZVT achieved (dotted line) and not achieved (solid line)
3.15 (a) Comparison of switching energies during the lagging leg transition for cases with and without $L_{\text {ext }}$. This transition occurs twice per switching period. ($V_{i n}=200 \mathrm{~V}$). (b) Comparison of conduction losses in primary winding circuit during the freewheeling period $\left(V_{i n}=200 \mathrm{~V}\right)$. 72

LIST OF FIGURES

3.16 Efficiency comparison of 'high speed' IGBT-based design of ZVT PS FB converter (at $T_{h}=25^{\circ} \mathrm{C}$, auxiliary supply $\approx 8 \mathrm{~W}$ const. not included) without and with two different values of $L_{\text {ext }}$. The best overall efficiency was achieved without $L_{e x t}$, despite the fact that ZVT was not achieved over the presented operating range. 73
4.1 (a) Battery voltage (b) SoC (c) battery discharge current and (d) his- togram of HV battery voltages during one discharge cycle of Li-Ion bat- tery in an EV obtained using FTP75 driving cycle data. 80
4.2 Illustration of SoC in a PHEV that initially operates in the charge de- pleting mode, and after reaching certain value of SoC , it continues its operation in charge sustaining mode. 81
4.3 (a) LV-side reconfigurable topology based on ZVT PS converter. (b) Configuration with full bridge rectifier for lower $V_{i n}$ range (switch in position 1). (c) Configuration with full wave rectifier for higher $V_{i n}$ range (switch in position 2). 82
4.4 (a) HV-side reconfigurable topology based on ZVT PS converter (b) Push-pull configuration for lower $V_{i n}$ range (switch in position 1). (c) Full bridge configuration for higher $V_{i n}$ range (switch in position 2). 84
4.5 Proposed implementation of two-position switch in LV reconfigurable topology ($S R_{5}$ conducts in the full wave rectifier configuration and $S R_{6}$ in the full bridge rectifier configuration. Both switches do not exhibit repetitive switching losses, only conduction losses.). 85
4.6 Proposed implementation of two-position switch in HV reconfigurable topology ($S_{\text {add }}$ conducts in push-pull configuration and $D_{\text {add }}$ in ZVT PS FB configuration. Both switches do not exhibit repetitive switching losses, only conduction losses.). 86
4.7 Two different configurations of proposed topology: (a) ZVT PS configuration in upper range of $V_{i n}$ and (b) push-pull configuration in lower range of $V_{i n}$ with corresponding primary winding currents and gate signals. Gate drive signals for push-pull operating mode can be derived from those for ZVT PS FB configuration using 2 AND logic gates. . . . 87

4.9 Flowchart of design procedure for reconfigurable converter. 92
4.10 (a) Voltage-weighted average efficiency of the proposed converter as a function of chosen $V_{\text {reconf }}$. (b) Expected increase in the average efficiency when $V_{\text {reconf }}$ is chosen as 300 V (detail from the plot (a)). 93
4.11 Family of efficiency curves (prototype measurements) of (a) the conventional ZVT PS FB with the transformer turns ratio of $10: 1$ and (b) the proposed reconfigurable converter with the transformer turns ratio of $10: 10: 1$ and $V_{\text {reconf }}=300 \mathrm{~V}$
4.12 Voltage-weighted average efficiency of the proposed converter compared to the conventional one calculated based on prototype measurements from Fig. 4.11.
4.13 Experimentally obtained waveforms of (a) the primary winding current $I_{t, \text { prim }}$ and (b) voltage over an IGBT switch $V_{c e}$ in the proposed (blue trace) and the standard converter prototype (red trace). All waveforms are measured in the same operating point with $V_{i n}=350 \mathrm{~V}$ and $I_{\text {load }}=$ 75 A. Proposed converter operates in ZVT PS FB configuration since $V_{\text {in }}>V_{\text {reconf }}$.96
4.14 (a) RMS currents of switches in the HV-side H-bridge in the proposed (dashed line) and in the standard converter (solid line) over the range of load currents. (b) Total losses of switches in the HV-side H-bridge in the conventional (blue line) and proposed converter (green line) as well as on $D_{\text {add }}$ in the proposed converter (red line). (c) Efficiency difference of switches in the HV-side H -bridge. The data is presented over the range of load currents at $V_{\text {in }}=350 \mathrm{~V}$ where the proposed converter operates in ZVT PS FB configuration. 97
4.15 The comparison of losses in the reconfigurable (area in the front) and the standard ZVT PS FB converter (area in the background) at $V_{i n}=350 \mathrm{~V}$ at (a) HV-side switches (b) LV-side switches and (c) passive elements (transformer, output filter and losses in PCB). Losses are presented one beside the other so that their difference is clearly visible (layered area chart). 98
4.16 Waveforms of the proposed converter in the push-pull configuration at $V_{\text {in }}=250 \mathrm{~V}$ and $I_{\text {load }}=75 \mathrm{~A}$: (a) the primary winding current $I_{t, \text { prim }}$ (b) voltage over an IGBT switch $V_{c e}$ and (c) gate drive voltage of the switch $V_{g e}$. 100
4.17 Some improvements of ZVT PS FB topology recently proposed in the literature (a) (1), (b) (2), (c) (3), and (d) (4). 106
6.1 Current waveform of transformer primary winding over one T_{s} with slopes used in Eqs. (6.1) to (6.3) and corresponding gate drive signals of HV-side H-bridge. 112
6.2 Current waveforms of the rectifier switches over one T_{s} (blue, solid line - $S R_{1}$ and $S R_{3}$, green, dotted line $-S R_{2}$ and $S R_{4}$) and corresponding gate drive signals. Slopes used in Eqs. (6.29) to (6.33) are marked. 116
6.3 Model of resistances of traces in the LV-side PCB used for calculation of conduction losses inside the board. The model is valid for the full bridge rectifier. The position of resistances is presented on the illustration of the board. 121
6.4 Model of resistances of traces in the LV-side PCB used for calculation of conduction losses inside the board. The model is valid for (a) full bridge rectifier (b) full wave rectifier and (c) current doubler. 122
6.5 Current waveforms of HV-side switches over one T_{s} (blue, solid line - $S R_{1}$, green, dotted line $-S R_{2}$) and corresponding gate drive signals. Slope used in Eq. (6.51) is marked. 123
6.6 Current waveforms of the rectifier switches over one T_{s} (blue, solid line - $S R_{1}$ and $S R_{3}$; green, dotted line $-S R_{2}$ and $S R_{4}$) and corresponding gate drive signals. Slopes used in Eqs. (6.62) to (6.63) are marked 124
6.7 Photo of converter prototype (front side). 127

[^0]
List of Tables

1.1 Characteristics of HV to LV DC/DC converter in (H)EVs 3
2.1 Transformer turns ratio calculation. 41
2.2 Circuit parameters and operating conditions used in the developed model. 47
3.1 Expected $V_{c e, t u r n-o f f}$ and $E_{o f f, C_{e x t}}$ with 2 nF external capacitive snub- ber. $E_{\text {off }, C_{e x t}}$ shows the expected reduction compared to design without $C_{e x t}$. 58
3.2 Loss mechanisms in IGBT-based converter affected by additional $L_{\text {ext }}$. 74
4.1 Calculated design parameters : conventional vs. propposed topology with $V_{\text {reconf }}=300 \mathrm{~V}$ for the converter specification from Table 1.1. 89
6.1 Conduction periods and switching transitions of HV-side switches in one T_{s}. 112
6.2 Conduction periods and transitions of LV-side switches in one T_{s} in case of ZVT PS FB converter. 117
6.3 Conduction periods and transitions of LV-side switches in one T_{s} in case of push-pull converter. 125
6.4 Prototype description. 127
6.5 Additional and modified components in the prototype converter used to enable reconfiguration. 128

Commonly Used Symbols of Physical Properties

Symbol	Unit	Description
B	T	Flux Density
C	F	Capacity
$C_{\text {oss }}$	F	MOSFET's Output Capacitance
$C_{o e s}$	F	IGBT's Output Capacitance
D	-	Duty Cycle
ΔT_{j}	K	Junction Temperature Ripple
$d v / d t$	$\mathrm{~V} / \mathrm{s}$	Slope of Voltage Rise
$d i / d t$	$\mathrm{~A} / \mathrm{s}$	Slope of Current Rise
E	Ws	Energy
η	$\%$	Efficiency

LIST OF TABLES

$f \quad \mathrm{~Hz}$ Frequency
$I \quad \mathrm{~A}$ Current
$L \quad \mathrm{H} \quad$ Inductance
n - Transformer Turns Ratio
$P \quad$ W Power
$R \quad \Omega \quad$ Resistance
$T_{j} \quad \mathrm{~K}$ Junction Temperature
$T_{v j} \quad \mathrm{~K} \quad$ Virtual Junction Temperature
$T_{a} \quad \mathrm{~K} \quad$ Ambient Temperature
$T_{h} \quad \mathrm{~K} \quad$ Heatsink Temperature
$T_{c} \quad \mathrm{~K} \quad$ Case Temperature
$T_{s} \quad \mathrm{~s} \quad$ Switching Period
t s Time
$t_{d} \quad \mathrm{~s} \quad$ Dead Time
$V \quad \mathrm{~V}$ Voltage

Indices

```
Index Description
add additional
aux auxiliary
ave average
BD body diode
bat battery
block blocking
CD current doubler
ce collector to emitter
copp copper
D diode
```


LIST OF TABLES

$d_{\text {loss }} \quad$ loss of duty cycle
$d s \quad$ drain to source
$\boldsymbol{E S R}$ equivalent series resistance
$\boldsymbol{F B}$ full bridge rectifier
frw freewheeling period
$\boldsymbol{F} \boldsymbol{W}$ full wave rectifier
ge gate to emitter
in input
$k \quad$ coefficient
lag lagging leg
lead leading leg
leak leakage
$\min \quad$ minimum
max maximum
nom nominal

off	turn-off
on	on-state
out	output
prim	primary
pt	power transfer
reconf	reconfiguration
ref	reference
res	resonant
$\boldsymbol{R M S}$	effective
\boldsymbol{S}	switch
$\boldsymbol{S R}$	synchronous rectifier
sat	saturation
$\boldsymbol{s e c}$	secondary
\boldsymbol{t}	transformer

[^0]: 6.8 Photo of converter prototype (HV side, back). 128

