
 
 
 

IGBT-based High Voltage to Low 
Voltage DC/DC Converter for 
Electric and Hybrid Vehicles  

 
 
 

Von der Fakultät für Elektrotechnik und Informationstechnik 

der Universität der Bundeswehr München 
 

 
zur Erlangung des akademischen Grades eines 

Doktor-Ingenieur 
(Dr.-Ing.) 

 
 

genehmigte Dissertation 
 
 

von 
 

M. Sc. Sandra Zeljkovic 
 
 
 
 

 
 
 

Neubiberg 
2015 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Vorsitzender:                Prof. Dr. Berthold Lankl 

1. Berichterstatter:      Prof. Dr.-Ing. Dieter Gerling 

2. Berichterstatter:      Prof. Dr. rer. nat. Ludwig Brabetz 

 

 

Tag der Promotion:     17. April 2015 



Shaker  Verlag
Aachen  2015

Forschungsberichte Elektrische Antriebstechnik und Aktorik

Band 16

Sandra Zeljkovic

IGBT-based High Voltage to Low Voltage DC/DC
Converter for Electric and Hybrid Vehicles



Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche
Nationalbibliografie; detailed bibliographic data are available in the Internet at
http://dnb.d-nb.de.

Zugl.: München, Univ. der Bundeswehr, Diss., 2015

Copyright  Shaker  Verlag  2015
All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording or otherwise, without the prior permission
of the publishers.

Printed in Germany.

ISBN 978-3-8440-3721-0
ISSN 1863-0707

Shaker  Verlag  GmbH  •  P.O. BOX 101818  •  D-52018  Aachen
Phone:  0049/2407/9596-0   •   Telefax:  0049/2407/9596-9
Internet: www.shaker.de   •   e-mail: info@shaker.de



 

Abstract 

 
The subject of this thesis is a high voltage (HV) to low voltage (LV) DC/DC converter in 
hybrid (HEVs) and electric vehicles (EVs). The focus is on use of an IGBT-based zero voltage 
transition (ZVT) phase shift (PS) full bridge (FB) topology for this application. Not only the 
high switching frequency is a challenge when designing the IGBT-based ZVT PS FB 
converter, but also the wide input voltage range and wide range of load currents during 
operation of the converter pose additional difficulty for its design and operation. In order to 
use the available energy of the HV battery of (H)EVs more efficiently, cost-effective loss 
reduction is one of the main objectives in the development of automotive HV to LV DC/DC 
converters, and therefore the significant portion of this work is focused in that direction.  

The research starts with the question if improved, trench fieldstop IGBT switches with tailless 
behavior, optimized for high frequency switching ('high speed' IGBTs), have potential to 
substitute superjunction MOSFETs that are nowadays commonly used at HV-side of the 
DC/DC converter at switching frequency of 100kHz. The efficiency of the IGBT-based 
converter is analyzed in detail in order to identify the most critical loss mechanisms and to 
propose efficiency improvement methods accordingly. Furthermore, one of the issues due to 
the required wide input and output voltage range is the voltage overshoot during turn-off of 
rectifier switches. A model is developed and experimentally validated for three different 
rectifier topologies to simulate turn-off voltage waveforms. Based on this model, the choice of 
the rectifier and its impact on the overall converter operation is discussed. In addition, design 
considerations to improve efficiency of the ZVT PS FB converter that were successfully 
applied in MOSFET-based designs are analyzed in the converter designed with 'high speed' 
IGBTs. The focus is on use of an external inductor to eliminate turn-on losses in the lagging 
leg of the HV side H bridge, and capacitive snubbers to reduce the turn-off losses. The effect 
of such additional components on switching losses of IGBTs and overall converter efficiency 
is analyzed. The results showed that the advantage of modern IGBTs over superjunction 
MOSFETs and older IGBT technologies is their optimal performance without external 
inductive and capacitive components. Thanks to their reduced turn-off losses, and at the same 
time low turn-on losses, the loss of ZVT in the lagging leg is not anymore critical to 
converter's efficiency. Since the investigated approaches are not efficient in IGBT-based ZVT 
PS FB in (H)EVs, and different approaches had to be developed to further improve the 
efficiency. 

Finally, to offer a solution for the problem of reduced efficiency due to the wide input voltage 
range, a new efficiency optimized single-stage reconfigurable topology is proposed. The 
proposed topology solves the problem of reduced converter efficiency in the upper range of 
HV battery voltages by adapting the transformer turns ratio depending on the input voltage. 
The topology is based on the ZVT PS FB converter that is during its operation, depending on 
the instantaneous value of battery voltage, reconfigured into a push-pull converter. The ZVT 
PS FB - the more efficient configuration covers upper range of input voltages whereas the 
hard-switching push-pull - the less efficient configuration covers the lower, less significant 
range. The ZVT PS configuration, due to tighter voltage range and more suitable transformer 
turns ratio, operates with reduced turn-off losses, significantly decreased circulating current in 
the freewheeling period as well as improved efficiency of the rectifier stage. The point of 
reconfiguration is chosen to maximize the average efficiency according to the histogram of 
HV battery voltage during a typical driving cycle. The proposed reconfiguration principle is 



 

also applicable to the rectifier stage at the LV side of the same converter. Operation of the 
proposed converter and the efficiency improvement are validated experimentally. 
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