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The Lord God formed the man from the dust of the ground
and breathed into his nostrils the breath of life

and the man became a living being.

Genesis 2:7, New International Version
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Abstract

A dysfunction of the pulmonary system triggers an impaired gas ex-
change with severe progressive hypoxemia and hypercapnia. In this
work, the abnormal breathing sounds are primarily acquired by a
newly set-up electronic stethoscope based on pig models and analyzed
with a Wavelet-denoising filter and Hilbert-Huang transform. This is
implemented for the feature extraction to classify the abnormal lung
sounds in terms of timing and the corresponding visual representa-
tion of instantaneous spectrum, respectively. With these quantitative
affirmations, crackles are detectable in the established computerized
auscultation system at the bedside. This unveils the unique patho-
physiological effect of the respiratory system in time and frequency
domains associated with the proposition from the American Thoracic
Society.

In intensive care medicine, the therapeutic approach is mainly based
on the institution of mechanical ventilation. To gain an insight into
the impact of ventilation variables upon carbon dioxide (CO2) elim-
ination, a mathematical model has been developed as a nonlinear
function of driving pressure, temporal settings, lung mechanics and
metabolic rate based on a single-compartment model. The percent of
inspiratory time (%TI) has been incorporated in the model of CO2
elimination for the first-time. Thus, this provides a valuable clinical
application in ventilation adjustments for hypercapnia therapy with
a validation of porcine dynamics, which, owing to the unequal airway
resistances during inspiration and expiration, is an optimal setting of
%TT and can furthermore enlarge CO2 elimination.

Since gas exchange of oxygen and COs is the prime essence of the
respiratory function, a closed-loop and embedded ventilation system
is set up with a Controller Area Network protocol for data commu-
nication based on an ARM microcontroller. It also uses MATLAB
with Simulink and ControlDesk software under a MicroAutoBox II
dSPACE platform for implementing the control algorithms and the
user interface. System identification is carried out for characterizing
model structures and model order with a least squares algorithm for
the non-invasive control of end-tidal CO2. Using an advanced model-
based approach, robust H loop-shaping and L£; adaptive control



Abstract

systems were designed and their closed-loop performances was simu-
lated. In addition, quasi non-identifier approaches of the non-linear
time-varying respiratory system, i.e. funnel control and policy iter-
ation algorithm, were implemented by simulations of the control of
oxygenation. The distinctive results of gas exchange control are then
achieved based on the proposed control algorithms with noninvasive
measurements.

Ultimately, automatic control of an artificial ventilation system was
configured in a star topology integrating the closed-loop hemodynamic
control of mean arterial blood pressure by noradrenaline infusion. The
overall multitasking with a goal-oriented structure was coded with
LabVIEW graphical programming and FuzzyTECH software for the
patients with acute respiratory distress syndrome in another develop-
ment platform, called “Ventilab”. The closed-loop fuzzy expert system
can actively and intelligently perform a long-term treatment with two
different protocol-driven ventilation strategies, namely standardized
automatic Acute Respiratory Distress Syndrome Network (ARDSNet)
protocol and innovative automatic Open Lung Management® based
on arterial oxygen saturation.

The former concept focuses on three main goals, namely the stabi-
lization and regulation of oxygenation, plateau pressure and blood pH,
while the latter seeks extremal pressures for recruitment maneuvers
and for proper ventilation related to the open lung concept, provides
protective ventilation, controls CO2 exchange with a fuzzy controller
and periodically reduces the positive end-expiratory pressure. Both
developed algorithms have high potentials for being integrated into a
commercial system and are potentially applicable for individuals as a
generalized solution for clinical ventilation. Based on porcine models
with surfactant wash-out by repetitive lung lavages, the algorithmic
performances were assessed by biochemical properties of standard ar-
terial blood gas analysis, mechanical properties of the setting ven-
tilation variables, and the pathophysiological change non-invasively
measured by real-time electrical impedance tomography.
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