Dezentrale elektrische Energiespeicherung mittels kinetischer Energiespeicher in AußenläuferBauform

Hendrik Schaede

Dissertation am Institut für Mechatronische Systeme im Maschinenbau Technische Universität Darmstadt

Vom Fachbereich Maschinenbau der Technischen Universität Darmstadt

Erlangung des Grades eines Doktor-Ingenieurs (Dr.-Ing.) genehmigte

Dissertation

vorgelegt von

Dipl.-Ing. Hendrik Stefan Schaede

aus Siegen

Berichterstatter: Prof. Dr.-Ing. Stephan Rinderknecht Mitberichterstatter: Prof. Dr.-Ing. Eberhard Abele

Tag der Einreichung: 25.02.2014

Tag der mündlichen Prüfung: 30.04.2014

Darmstadt 2015

D 17

Forschungsberichte Mechatronische Systeme im Maschinenbau

Hendrik Schaede

Dezentrale elektrische Energiespeicherung mittels kinetischer Energiespeicher in Außenläufer-Bauform

D 17 (Diss. TU Darmstadt)

Shaker Verlag Aachen 2015

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: Darmstadt, Techn. Univ., Diss., 2014

Copyright Shaker Verlag 2015 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8440-3575-9 ISSN 2198-8536

Shaker Verlag GmbH • Postfach 101818 • 52018 Aachen Telefon: 02407 / 95 96 - 0 • Telefax: 02407 / 95 96 - 9 Internet: www.shaker.de • E-Mail: info@shaker.de

Vorwort

Diese Dissertation entstand im Rahmen meiner Tätigkeit als wissenschaftlicher Mitarbeiter des Instituts für Mechatronische Systeme im Maschinenbau der Technischen Universität Darmstadt. Teile der beschriebenen Forschung wurden mit Mitteln der Landes-Offensive zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz (LOEWE), Förderlinie 3: KMU-Verbundvorhaben des Landes Hessen gefördert.

Professor Nordmann möchte ich für die Möglichkeit danken im Bereich der aktiven Magnetlager zu promovieren. Professor Rinderknecht für das gute Arbeitsklima, das Vertrauen in meine Arbeit sowie die damit einhergehende Freiheit und Unterstützung bei der Erarbeitung der Thematik und dem Aufbau des neuen Forschungsschwerpunktes der elektrischen Energiespeicher am Institut. Und natürlich für die Betreuung meiner Promotion. Professor Abele für die Unterstützung unserer Forschung im Rahmen des Projektes ETA-Fabrik, die dabei deutlich gewordene Wertschätzung und die Co-Betreuung der Promotion.

Norman Butzek hat mir den Weg in die Mechatronik geebnet, Martin Ernst gezeigt, dass der Teller zwar groß ist, es aber trotzdem immer lohnt über den Rand zu schauen. Mecatronix hat mir vermittelt, dass der ganzheitliche Ansatz der Mechatronik, die Faszination für die Magnetlager und der Spaß bei der Arbeit nicht auf das wissenschaftliche Umfeld beschränkt sind.

Meine Arbeit wäre in dieser Breite und Tiefe nicht ohne die Unterstützung durch annähernd unzählige Studenten möglich gewesen. Im Rahmen Eurer Studien- und Diplom-, Bachelor- und Master-Arbeiten, ADPs und Forschungsseminare oder als Hiwi habt Ihr maßgeblich die Thematik vorwärts getrieben und mir in der Regel große Freude dabei bereitet.

Besonders hat mich gefreut, dass Lukas Quurck, Michael Richter und Maximilian Schneider schließlich den Weg ans Institut gefunden haben und wir gemeinsam den Energiespeichern zu Leibe rücken konnten. Ich drücke Euch die Daumen, dass es so weiter läuft!

Allen Freunden, Ihr habt mich verstanden, abgelenkt und unterstützt. Danke!

Einen besonderen Beitrag hat natürlich meine Familie. Danke für die Möglichkeiten und die Unterstützung die Ihr mir immer geboten habt! Liebe Britta, großartig, dass ich Dich habe. Großartig, dass wir es beide endlich geschafft haben!

Vorwort

Inhalt

V	ORWORT		III
II	NHALT		V
S	YMBOLVI	ERZEICHNIS	IX
1	EINLE	TUNG	1
	ENTWICKL	UNGSMETHODIK	3
	BETRIEBSS	TRATEGIEN	4
	KINETISCH	IE ENERGIESPEICHER	4
	KINETISCH	IE ENERGIESPEICHER IN AUßENLÄUFER-BAUFORM	5
	STRUKTUR	DER ARBEIT	6
	ANWENDU	NGSBEISPIEL LEISTUNGSANPASSUNG IN DER PRODUZIERENDEN INDUSTRIE	6
2	STATIO	ONÄRE ELEKTRISCHE ENERGIESPEICHERSYSTEME	9
	2.1 Eig	SENSCHAFTEN UND MODELLIERUNG VON ELEKTRISCHEN ENERGIESPEICHERSYSTEMEN	10
	2.2 EN	ERGETISCHE VERLUSTE IN ELEKTRISCHEN ENERGIESPEICHERSYSTEMEN	12
	2.2.1	Modellierung der Verluste über Verlustparameter	14
	2.2.2	Kennfeldbasierte Betrachtung der Verluste	15
	2.3 BE	TRIEBSSTRATEGIEN	17
	2.3.1	Integration von Energiespeichersystemen	17
	2.3.2	Umsetzung der Betriebsstrategie	19
	2.3.3	Das Energiespeichersystem als Filter	22
	2.3.4	Implementierung von Haupt- und Nebenfunktionen des Energiespeichersysten	ns . 24
	2.3.5	Ebenen von Betriebsstrategien und Erweiterung um Prognosemethoden	25
3	ENTW	ICKLUNGSMETHODIK	29
	3.1 Spi	EZIFIZIERUNG DER ANFORDERUNGEN (SPECIFICATION)	32
	3.1.1	Anforderungen an das Ausgangs-Lastprofil	34
	3.1.2	Synthese des generischen Speicherprofils	35
	3.1.3	Dimensionierung des Energiespeichersystems	38
	3.1.4	Synthese des beschränkten, generischen Speicherprofils	41
	3.1.5	Belastung des Energiespeichersystems	42
	3.1.6	Erfassung des Betriebskollektivs	43

	3.2	Aus	SLEGUNG DES ENERGIESPEICHERSYSTEMS (DESIGN)	44
	3.3	BEV	VERTUNG DES ENERGIESPEICHERSYSTEMS (ASSESSMENT)	46
	3.3	3.1	Beispiele für anwendungsneutrale Kennzahlen	47
	3.3	3.2	Anwendung der Kennzahlen	48
	3.3	3.3	Diskussion der Kennzahlen	51
4	KII	NETI	SCHE ENERGIESPEICHER	52
	4.1	Fun	NKTIONSPRINZIP DER TECHNOLOGIE	53
	4.2	VEF	RLUSTE IN KINETISCHEN ENERGIESPEICHERN	55
	4.3		POLOGIEN VON KINETISCHEN ENERGIESPEICHERN	
	4.4	VEF	RGLEICH DER SYSTEME	60
	4.5	Zus	SAMMENFASSENDE DARSTELLUNG	62
5	AN	ALY	TISCHES MODELL KINETISCHER ENERGIESPEICHER	65
	5.1	Ro	TOR	66
	5.1	.1	Polares Trägheitsmoment der Schwungmasse	67
	5.1	.2	Rotordynamisches Verhalten	69
	5.1	.3	Festigkeit und Aufdehnung des Rotors	71
	5.1	.4	Diskussion des Rotor-Modells	76
	5.1	.5	Gasreibung	77
	5.1	.6	Diskussion des Modells der Gasreibung	80
	5.2	BEF	RÜHRUNGSLOSE LAGERUNG	80
	5.2	2.1	Permanentmagnetisches Axiallager	82
	5.2	2.2	Aktives Magnetlager, Radiallager	83
	5.2	2.3	Maximale radiale Lagerkraft	87
	5.2	2.4	Auslegung des homopolaren Magnetlagers	88
	5.2	2.5	Rotationsverluste des homopolaren Magnetlagers	92
	5.2	2.6	Diskussion des Modells der Magnetlagerverluste	96
	5.3		TOR-GENERATOR-EINHEIT	
	Dis	kuss	ion des Modells der Motor-Generator-Einheit	104
	5.4	BES	TIMMUNG DER BETRIEBSVERLUSTE	105
	5.5	PAF	RAMETERSTUDIEN GESAMTMODELL	
	5.5		Vergleich der Auslegung auf maximale gravimetrische Energiedichte u	
	Bet	riebs	sverluste	
	5.5	5.2	Einfluss der Dimensionierung der Leistung	
	5.5	5.3	Einfluss der Dimensionierung der Kapazität	
	5.5	.4	Diskussion der Parameterstudien	114

EXPERIMENTELLER FUNKTIONSNACHWEIS		116	
5.6	INTEGRATION DER KOMPONENTEN	119	
5.7	ROTORTEMPERATUR IM BETRIEB	121	
5.8	VAKUUMSYSTEM	124	
5.9	ZUSAMMENFASSUNG	126	
6 FA	ZIT	127	
LITERATURVERZEICHNIS			
BETRE	BETREUTE UND CO-BETREUTE STUDENTISCHE ARBEITEN13		