System- und Komponentenentwicklung für einen Brenngaserzeuger zur Dampfreformierung von Diesel in mobilen PEM-Brennstoffzellensystemen

Von der Fakultät für Georessourcen und Materialtechnik der Rheinisch-Westfälischen Technischen Hochschule Aachen

zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

genehmigte Dissertation

vorgelegt von Dipl.-Ing.

Marius Maximini

aus Trier

Berichter: Univ.-Prof. (em.) Dr.-Ing. Heinrich Köhne

Univ.-Prof. Dr. rer. nat. Angelika Heinzel

Univ.-Prof. Dr.-Ing. Herbert Pfeifer

Tag der mündlichen Prüfung: 09. Januar 2015

Berichte aus der Verbrennungstechnik

Band 35

Marius Maximini

System- und Komponentenentwicklung für einen Brenngaserzeuger zur Dampfreformierung von Diesel in mobilen PEM-Brennstoffzellensystemen

Shaker Verlag Aachen 2015

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: D 82 (Diss. RWTH Aachen University, 2015)

Copyright Shaker Verlag 2015 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8440-3439-4 ISSN 1430-9629

Shaker Verlag GmbH • Postfach 101818 • 52018 Aachen Telefon: 02407 / 95 96 - 0 • Telefax: 02407 / 95 96 - 9 Internet: www.shaker.de • E-Mail: info@shaker.de

System- und Komponentenentwicklung für einen Brenngaserzeuger zur Dampfreformierung von Diesel in mobilen PEM-Brennstoffzellensystemen

Kurzfassung

Brennstoffzellensysteme eignen sich wegen ihrer hohen Energieeffizienz in niedrigen Leistungsklassen besonders als *Auxiliary Power Unit (APU)* zur Bordstromversorgung. Für mobile Brennstoffzellen-APU sind flüssige Brennstoffe wegen ihrer hohen Energiedichte und der leichten Handhabung vorteilhaft. Um die Markteinführung solcher Systeme zu erleichtern sollte der Brennstoff eingesetzt werden, der auch für den Antrieb des Fahrzeugs eingesetzt wird

In dieser Arbeit werden Untersuchungen zur Entwicklung eines modularen PEM-Brennstoffzellensystems für den Einsatz als APU in Campingfahrzeugen und Yachten vorgestellt. Auf der Basis von früheren Untersuchungen wird ein Brenngaserzeuger für die Dampfreformierung von Diesel weiterentwickelt. In einer numerischen Analyse werden mit Hilfe von 0D-Simulationen in MATLAB/Simulink® die Einflüsse von Betriebsparametern auf den autarken Betrieb des Brenngaserzeugers und den Systembetrieb mit HT-PEM untersucht. Es werden die Effekte auf Wirkungsgrade und die Wasserbilanz analysiert. Anschließend werden verschiedene Optionen zur Integration eines Restgasbrenners für den Umsatz von Reformat numerisch untersucht und bewertet.

Mit dem Ziel der System- und Prozessoptimierung wird ein neuer multifunktionaler Gemischbildner in das System integriert, der die Systemkomplexität reduziert. Der Gemischbildner wird in den Betriebsmodi als Startbrenner und Kalte-Flamme-Verdampfer experimentell charakterisiert. Anschließend wird ein neues Startkonzept für das System unter Anwendung aller Funktionen des Gemischbildners entwickelt. Die Prozessführung des Startvorgangs wird um eine Betriebsphase mit oxidativer Dampfreformierung erweitert, um die katalytischen Reaktoren reaktiv und simultan aufzuheizen. Diese Strategie wird an einem Reformer experimentell demonstriert und durch Parametervariationen weiter optimiert. Im Anschluss wird die Startstrategie auf den Brenngaserzeuger übertragen. Die Startzeit bis zur Bereitstellung von Reformat für eine PEM-Brennstoffzelle wird dadurch deutlich reduziert.

Als Dampfreformer wird im bestehenden System ein katalytisch beschichteter Wärmeübertrager mit Mikrokanälen zur direkten Kopplung der Dampfreformierung mit der katalytischen Verbrennung eingesetzt. Dieser wird für die neue Anwendung in einer mobilen APU optimiert. Fünf Edelmetallkatalysatoren zur Dampfreformierung von Diesel werden mit Hilfe von skalierten Reformern charakterisiert und bewertet. Mit einem ausgewählten, hochaktiven Katalysator werden Untersuchungen zur Dauerstabilität des Reformierungsbetriebs mit logistischem Diesel durchgeführt. Dabei wird eine starke Katalysatordesaktivierung in Abhängigkeit von den Betriebsparametern beobachtet. Eine geometrische Optimierung des Reformers wird in Form einer größeren Mikrokanalhöhe untersucht. Diese erweist sich als vorteilhaft für den Brennstoffumsatz und den Druckverlust.

Development of a fuel processor for diesel steam reforming in mobile PEM fuel cell systems

Abstract

Fuel cell systems are particularly suitable for application as auxiliary power units (APU) due to their high efficiency in the low power range. For mobile fuel cell APU, liquid fuels provide the advantages of high energy densities and easy handling. In order to facilitate the market entry of fuel cell APU, the fuel used for propulsion of the vehicle should also be used for the APU.

In this work, the development of a modular PEM fuel cell system is presented, which is intended to be applied as an APU for caravans and yachts. Based on the developments of a preceding project, a fuel processor is optimized for diesel steam reforming. A numerical analysis of the PEM fuel cell system is performed applying 0D system simulations in MATLAB/Simulink®. The simulations are carried out for the stand-alone fuel processor and a system with a HT-PEM fuel cell. The effects of varying operating parameters on the efficiencies and the water recovery are analyzed. In addition, several options for the integration of a tail gas burner are simulated and evaluated.

Within the scope of the system optimization and the process optimization, a multifunctional reactor is integrated in order to reduce the system complexity. The reactor is experimentally characterized in the start-up burner mode and the Cool Flame reactor mode. After that, a new start-up strategy is developed for the system, using all functions of the reactor. Within this strategy, a phase of oxidative steam reforming is applied for simultaneous reactive heating of all catalytic reactors of the fuel processor. The feasibility of the new strategy is demonstrated on an experimental setup with a steam reformer, and the operating parameters are optimized for a fast start-up. Subsequently, the start-up procedure is transferred to the complete fuel processor. Applying reactive heating of the fuel processor, the start-up time, until reformate sufficient for PEM fuel cells is supplied, can be significantly reduced.

The steam reformer in the existing fuel processor is designed as a catalytically coated microchannel heat exchanger that thermally couples the steam reforming reaction to the catalytic combustion reaction. For the new application in a mobile APU, the steam reformer is optimized. Five catalysts for diesel steam reforming are experimentally characterized using downscaled reformers. After evaluation, one promising highly active catalyst is tested with respect to the long-term stability in steam reforming of logistic diesel fuel. During operation, strong deactivation of the catalyst is observed, depending on the operating conditions. Further optimization of the steam reformer is carried out by testing a design modification with increased height of the microchannels. This modification is beneficial in terms of fuel conversion and pressure loss.

Inhaltsverzeichnis

1	Ein	eitung	1
	1.1	Motivation	1
	1.2	Zielsetzung und Aufgabenstellung	2
	1.3	Gliederung	3
2	Star	nd der Technik	5
	2.1	Logistische, flüssige Brennstoffe für den Einsatz in Brennstoffzellensystemen	5
	2.2	Grundlagen der Reformierung	7
	2.2	.1 Betriebsparameter der Reformierung	7
	2.2		
	2.2	.3 Charakterisierung von Katalysatoren für die Reformierung	9
	2.2	.4 Desaktivierung von Katalysatoren bei der Reformierung	10
	2.2	.5 Wärmeübertrager für die Dampfreformierung von logistischen Brennstoffen	12
	2.3	Brennstoffzellsystemen auf Basis von flüssigen Brennstoffen	14
	2.3	.1 Verdampfung und Gemischbildung mit Kalter Flamme	15
	2.3	.2 Prozessgasaufbereitung	17
	2.3	.3 PEM-Brennstoffzellen	18
	2.3	.4 Wirkungsgrade	19
	2.4	PEM-Brennstoffzellensysteme für den Einsatz als APU	20
	2.4	.1 Systementwicklung und –Optimierung von Brennstoffzellensystemen	20
	2.4	.2 Systemberechnung von PEM-Brennstoffzellensystemen	21
	2.4	.3 Stand der Technik von mobilen APU mit PEM-Brennstoffzellen	23
	2.4	.4 Kaltstartkonzepte für mobile PEM-Brennstoffzellensysteme	25
3	Nur	nerische Analyse eines modularen Brennstoffzellensystems	28
	3.1	Weiterentwicklung des Brennstoffzellensystems für den mobilen Einsatz	28
	3.2	Modellierung	30
	3.3	Berechnung des LT-PEM-Brennstoffzellensystems	30
	3.4	Berechnung des autarken Brenngaserzeugers	31
	3.4	.1 Ergebnisse	31
	3.4	.2 Schlussfolgerung	34
	3.5	Berechnung des HT-PEM-Brennstoffzellensystems	35
	3.5	.1 Ergebnisse	35
	3.5	.2 Schlussfolgerung	39
	3.6	Berechnungen zur Integration eines Restgasbrenners	40
	3.6	1 Frachnisse	41

	3.6.2	Schlussfolgerung	44
4	Syste	m- und Prozessführungsoptimierung am Brenngaserzeuger	45
	4.1	Einführung eines multifunktionalen Gemischbildners	45
	4.2	Experimentelle Untersuchungen zum Brennerbetrieb des Gemischbildners	46
	4.2.1	Versuchsaufbau	46
	4.2.2	Versuchsdurchführung	46
	4.2.3	Ergebnisse	47
	4.2.4	Schlussfolgerung	49
	4.3	Untersuchungen zum Kalte-Flamme-Betrieb des Gemischbildners	49
	4.3.1	Versuchsaufbau	49
	4.3.2	Versuchsdurchführung	49
	4.3.3	Ergebnisse	50
	4.3.4	Schlussfolgerung	54
	4.4	Systemintegration des multifunktionalen Gemischbildners	54
	4.5	Startstrategie mit sequentieller Beheizung	58
	4.6	Startstrategie mit reaktiver Beheizung	59
	4.6.1	Berechnungen zur Startstrategie mit reaktiver Beheizung	60
	4.6.2	Schlussfolgerung	63
		Experimentelle Untersuchungen zur Startstrategie mit reaktiver Beheizung am	
		Dampfreformer	
	4.7.1		
	4.7.2		
	4.7.3	8	
	4.7.4	6 6	
		Transfer der Startstrategie auf das Brenngaserzeugermodul	
	4.8.1		
	4.8.2		
5	•	nierung eines Mikrokanaldampfreformers	
		Aufbau des skalierten Reformers	
	5.2	Versuchsaufbau	77
	5.3	Charakterisierung von Edelmetallkatalysatoren an skalierten Reformern	
	5.3.1	Versuchsdurchführung	79
	5.3.2	8	
	5.3.3		
		Untersuchungen zur Dampfreformierung von Diesel	
	5.4.1		
	542	2. Ergebnisse	88

	5.4.3	Schlussfolgerung	93
5	.5 Un	tersuchung eines Reformers mit veränderter Kanalhöhe	94
	5.5.1	Versuchsdurchführung	94
	5.5.2	Ergebnisse	94
	5.5.3	Schussfolgerung	98
6	Zusamı	menfassung und Ausblick	99
7	Literat	urverzeichnis	103
Anl	nang		A-1
A.1	Verzeic	hnisse	A-1
A.2	2 Ergänzungen zum Stand der Technik		
A.3	3 Material und Methoden		
A.4	4 Analytik		
A.5	5 Ergänzende Abbildungen und Tabellen		
A.6	Berech	nungen zur Katalysatorcharakterisierung	A-28