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A B S T R A C T

In the present thesis, we propose a computational cognitive model for processing

iconic gestures performed with hands and arms. Among different social behav-

iors, investigating gestures has gained special attention during the last decades.

From a phenomenological perspective, gestures comprise mostly unconvention-

alized non-verbal behaviors that bring different aspects of social, motor and

embodied cognition together. This inherent variability creates considerable chal-

lenges during processing, and in particular when the goal is cognitive modeling.

In the field of human-computer interaction, advances in motion tracking systems

have opened the gateway to the broader application of gesture-based user inter-

faces. Virtual humanoid agents are been increasingly used in human-computer

interaction as user friendly interfaces that allow for intuitive and natural face-to-

face communication. Furthermore, they can embody computational models of

human social cognition, and provide suitable testbeds for cognitive models and

theories.

Against this background, we propose a model that endows artificial humanoid

agents with the ability to gesture. This capacity includes, for instance, fast and

reliable recognition of highly diverse gesture performances, the ability to learn

how to perform gestures through imitation, and to establish gestural alignment

during interaction with human users. To this end, we propose a cognitive model

of the human sensorimotor system based on neuroscience and psychological

empirical evidence, and couched in current cognitive theories. To implement

information processing within this cognitive model, we propose two compu-

tational approaches with complementary strengths and weaknesses. Empirical

Bayesian Belief Update (EBBU) features the fast, incremental and cognitively

plausible recognition of gestures during interaction with humans, achieved by

combining bottom-up perception with top-down prediction. We also propose

a Feature-based Stochastic Context-Free Grammar (FSCFG) to learn discrimina-

tive or descriptive grammar models of gestures. Applying this approach to a

recorded dataset of iconic gestures demonstrated its considerable generalization

capacity over both syntactic structure variabilities, and the statistical spatiotem-

poral deviations inherent to gesture.
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