Influence of Ice Formation on Drop Dynamics

Vom Fachbereich Maschinenbau an der Technischen Universität Darmstadt zur Erlangung des Grades eines Doktor-Ingenieurs (Dr.-Ing.) genehmigte

Dissertation

vorgelegt von

Dipl.-Ing. Antonio Criscione

aus Ragusa, Italien

Berichterstatter:	Prof. DrIng. C. Tropea
Mitberichterstatter:	Prof. DrIng. B. Weigand
	Apl. Prof. DrIng. S. Jakirlić
Tag der Einreichung:	27.01.2014
Tag der mündlichen Prüfung:	16.04.2014

Darmstadt 2014 D17 (Diss. Darmstadt)

Berichte aus der Luft- und Raumfahrttechnik

Antonio Criscione

Influence of Ice Formation on Drop Dynamics

D 17 (Diss. TU Darmstadt)

Shaker Verlag Aachen 2014

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available in the Internet at http://dnb.d-nb.de.

Zugl.: Darmstadt, Techn. Univ., Diss., 2014

Copyright Shaker Verlag 2014 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the publishers.

Printed in Germany.

ISBN 978-3-8440-3104-1 ISSN 0945-2214

Shaker Verlag GmbH • P.O. BOX 101818 • D-52018 Aachen Phone: 0049/2407/9596-0 • Telefax: 0049/2407/9596-9 Internet: www.shaker.de • e-mail: info@shaker.de I dedicate this thesis to my parents and my life partner Julia for their exhaustless encouragement, support and patience during my doctoral candidature.

Hiermit versichere ich, die vorliegende Doktorarbeit unter der Betreuung von Prof. Dr.-Ing. C. Tropea und Apl. Prof. Dr.-Ing. S. Jakirlić nur mit den angegebenen Hilfsmitteln selbständig angefertigt zu haben.

Darmstadt, den 27. Januar 2014

Abstract

Atmospheric icing occurs when supercooled large drops (SLD) of water come in contact with the surface of exposed structures. Excessive accumulation on structures and equipment is well known for causing serious problems in cold-climate regions which lead to material damage and high costs in various sectors of the economy. Airframe icing is a topic of great interest to aerospace industry; it is mainly concerned with the safe and efficient operation of an aircraft. Hereby, SLD impact violently with the skin of the aircraft and as consequence an ice layer grows which covers the surface of the airplane. The initial objective of this study consists in to gain a better understanding of the fluid mechanics of the impacting/shedding drop without phase change and the thermodynamics governing the crystallization process. Both, numerical and experimental investigations are conducted; experiments on drop shedding are carried out at the Department of Mechanical Engineering, Lassonde School of Engineering in Toronto. The modeling of the crystallization process represents the most challenging part of this work.

This study allows, inter alia, for modeling both stages of the solidification process of a SLD of water on a cold substrate - the first rapid, recalescent stage and the second slower, quasi-isothermal stage. The different mechanisms underlying both freezing stages can be explained as follows: in the first stage the initial planar solidification front becomes morphologically unstable due to a high degree of supercooling. Small bumps/instabilities evolving at the interface propagate further into the liquid. During this transition process the small bumps at the solid-liquid interface develop into crystals of different shapes. A small fraction of the drop freezes instantaneously, until the thermal energy rate originating from supercooling is exhausted. The crystallization can be modeled as growing front of needle-like dendrites. In the second stage, the cold substrate cools the water between the needles and, accordingly, the crystallization front grows up planar from the cold boundary. The velocity of the solidification front is considerably lower than the freezing velocity in the first stage. The second stage can be mathematically described as a stable one-dimensional solidification process.

Kurzfassung

Das Thema der Vereisung (engl. Icing) ist ein aktuelles Forschungsfeld, an dem ein direktes, öffentliches (gesellschaftliches und politisches) Interesse besteht. Dies liegt daran, dass Vereisung unmittelbar mit hohen Risiken und Kosten verknüpft ist. In der Vergangenheit gab es z.B. zahlreiche Flugzeugunfälle, die auf Vereisung von Tragflächen oder mechanischen Komponenten des Flugzeuges zurückzuführen sind. Die Eisanlagerung entsteht hauptsächlich beim Durchfliegen von niedrig liegenden Wolken Die Wassertropfen prallen auf die mit unterkühlten Wassertropfen. Flugzeugoberfläche auf und vereisen. Die gebildete Eisschicht kann die Flugzeugeigenschaften derart beeinträchtigen, dass es sogar, von erhöhten Transportkosten abgesehen, zu dramatischen Unfällen führen Ziel dieser Arbeit ist ein tiefergehendes Verständnis für die kann. hvdro- und thermodynamischen Prozesse der vereisenden, unterkühlten Wassertropfen zu erlangen. Das Verhalten von aufprallenden (Impact) und fließenden (Drop Shedding) Wassertropfen ohne Phasenwechsel wird experimentell und mithilfe von CFD-Simulationen untersucht. Für die Shedding-Experimente hat man den Windkanal an der Lassonde School of Engineering in Toronto verwendet. Der in zwei Stufen ablaufende Gefrierprozess von unterkühlten Wassertropfen mit Wandinteraktion wird modelliert und anhand numerischer Ergebnisse validiert. In der ersten Stufe der Vereisung wird die anfänglich ebene Erstarrungsfront, bedingt durch heterogene Nukleation, aufgrund eines hohen Unterkühlungsgrades morphologisch destabilisiert. Kleine Unebenheiten entstehen an der Wasser-Eis-Grenzfläche. Diese Instabilitäten wachsen an der Grenzfläche zu kristallartigen Strukturen. Dabei gefriert nur ein kleiner Teil des Tropfens nach der ersten Vereisungstufe, unmittelbar bis die thermische Energie der anfänglichen Unterkühlung im Tropfen ausgeschöpft ist. Die Kristallisationsfront kann als eine Ansammlung von wachsenden, nadelähnlichen Dendriten modelliert werden. In der zweiten Stufe kühlt das kalte Substrat das verbliebene, flüssige Wasser im Tropfen. Das flüssige Wasser vereist stabil und eine zweite, planare Kristallisationsfront wächst von unten nach oben. Die zweite Stufe kann als eine stabile Erstarrungsfront modelliert werden.

Acknowledgements

I would like to express my deep and sincere gratitude to following individuals who contributed in different ways to the success of this work.

First of all, it is a pleasure to thank Professor **Cameron Tropea** who gives me the opportunity to join the SFB-TRR 75 collaborative research center, write this thesis and do external experiences promoting my professional development. It has been a great privilege to join his Institute for Aerodynamics and Fluid Mechanics (SLA) getting the most updating knowledge and working with very capable researchers.

I owe my deepest gratitude to my supervisor, Professor **Suad Jakirlić**, for his detailed instructions and constructive comments which guided me trough my doctoral study. I want to thank him for the patiently reading of my reports and editing my manuscripts in an ever very friendly manner. I consider it an honor to have the opportunity to work with him.

I am deeply grateful to Professor Ilia V. Roisman, for his ever invaluable instructions and critiques. I learned a lot from him; apart from theory derivation and development, but also the correct attitude to face a scientific problem and to analyze every step carefully. His input was of crucial importance, without it this work would not have been possible.

A special gratitude goes to Professor Željko Tuković for his patience and time in introducing me to numerical methods in multiphase-flows. His contribution to the development of the computational algorithm and continued assistance was of great importance to the progress of this work. I share the credit of my work with him.

It gives me great pleasure in acknowledging the support of Professor **Alidad Amirfazli** for giving me the opportunity to do a very interesting experience in his department of Mechanical Engineering at York University (Lassonde School of Engineering) in Toronto. I really enjoyed the time in his laboratory learning a lot about experimental methods.

Last but not least, I want to acknowledge the many friends, colleagues and students who supported my research over the years. Particular thanks go to seven colleagues/friends who supported me providing initiatives, suggestions and criticisms during my doctoral candidature: Dr. Chi-Yao Samuel Chang (Fraunhofer IFAM Oldenburg), M.Sc. Daniel Kintea, M.Sc. Niklas Linder, Dr. Deepak Kumar Mandal (Lassonde School of Engineering Toronto), M.Sc. Rüdiger Röhrig, M.Sc. Markus Schremb and M.Sc. Matthias Völlinger. Thank you!

This research was financially supported by the German Scientific Foundation (DFG) in the framework of the SFB-TRR 75 collaborative research center.

Latin letters

Upper case

Symbol	SI base units	Description
A	m^2	cross-sectional area
$A_{\rm cell}$	m^2	cross-sectional area of array cell
A_D	m^2	frontal area of the sessile drop
Ca	-	capillary number
C_D	-	drag coefficient
C_L	-	lift coefficient
D	m	drop diameter
D^0	m	initial drop diameter
D_z	m	spreading diameter
\tilde{D}_z	-	non-dimensional spreading diameter
$F_{\rm adh}$	$\rm kg \ m/s^2$	adhesion force
$F_{\rm drag}$	$\rm kg \ m/s^2$	drag force
H_D	m	height of the sessile drop
Ι	-	Ivantsov function
L	$\mathrm{m}^2/\mathrm{s}^2$	latent heat of crystallization
$L_{\rm eff}$	m	effective diameter of the wind tunnel
L_v	$kg/(s^2 m)$	volumetric latent heat of crystallization
Ma	-	Mach number
Pe	-	Peclet number
R	m	radius of nucleus
R_c	m	critical radius
R_D	m	base area radius of the sessile drop

$R_{\rm eff}$	m	effective radius
R_I	m	instability radius
Re	-	Reynolds number
Re^0	-	initial Reynolds number
Re_{∞}	-	cross-flow Reynolds number
Re_c	-	critical Reynolds number
S	m	perimeter of the cross-section
S_f	-	unit surface normal vector
S_f	m^2	surface area
St	-	Stefan number
St^0	-	Stefan number at initial time step
T	Κ	temperature
T^0	К	temperature at initial time step
$T_{\rm bath}$	Κ	temperature in the chilling system's bath
T_B	К	temperature at domain boundary
T_f	Κ	interface temperature
T_l	Κ	temperature of liquid phase
T_m	К	melting/crystallization temperature
T_s	Κ	temperature of solid phase
$T_{\rm sub}$	К	substrate temperature
U	m/s	velocity
U^0	m/s	initial drop velocity
U_{∞}	m/s	cross-flow velocity
$U_{\rm air}$	m/s	airflow velocity
$U_{\rm crit}$	m/s	critical cross-flow velocity
$U_{\rm char}$	m/s	characteristic cross-flow velocity
V	m/s	constant crystal's tip velocity
V_D	1	drop volume
X	m	thickness of the solid front
We	-	Weber number
We^0	-	initial Weber number
$We_{\infty,c}$	-	critical cross-flow Weber number

Lower case

Symbol	SI base units	Description
a	m	needle radius
ã	-	non-dimensional needle radius
c_l	$m^2/(s^2 K)$	specific heat capacity of liquid phase
c_s	$m^2/(s^2 K)$	specific heat capacity of solid phase
c_v	$kg/(s^2 m K)$	volumetric heat capacity
$c_{v,l}$	$kg/(s^2 m K)$	volumetric heat capacity of liquid phase
$c_{v,s}$	$kg/(s^2 m K)$	volumetric heat capacity of solid phase
d	m	drop diameter
d	-	unit vector indicating flow direction
d_s	-	symmetry value
e	$\rm kg \ m^2/s^2$	internal energy
erf	-	error function
erfc	-	complementary error function
f	-	friction factor
f_{Hoff}	-	Hoffman function
h_s	m	thickness of aluminum sheet
k	$\rm kg~m/(s^3~K)$	heat conductivity
k_l	$\rm kg~m/(s^3~K)$	heat conductivity of liquid phase
k_s	$\rm kg~m/(s^3~K)$	heat conductivity of solid phase
$k_{\rm kin}$	K s/m	kinetic coefficient
l_d	m	length of the initial needle
$l_{\rm dec}$	m	decay length
m	kg	mass
n	-	unit vector normal to solid-liquid interface
$oldsymbol{n}_f$	-	normal unit vector on boundary face
n_s	$\frac{1}{\log (m s^2)}$	unit vector normal to substrate
p na	$kg/(m s^2)$	ambiont prossure
P_0	m	tin radius of dendrite
' t +		time
U	5	011110

v_{cl}	m/s	propagation velocity of the contact line
v_n	m/s	normal interface velocity
v_n^0	m/s	characteristic velocity of the system
v_t	m/s	tip velocity of dendrite
$v_{\rm tot}$	m/s	total velocity of the solid-liquid interface
$v_{t,\exp}$	m/s	dendrite tip velocity from experiments
$v_{ ho}$	m/s	component of interface velocity due to density jump
x	m	position vector

Greek letters

Upper case

\mathbf{Symbol}	SI base units	Description
Γ	m K	capillary constant
Δ	-	dimensionless supercooling
ΔT	Κ	initial supercooling
$\Delta T_{\rm kin}$	Κ	kinetic undercooling
ΔT_t	Κ	total undercooling
ΔT_{Γ}	Κ	capillary undercooling
Θ	°/-	angle/non-dimensional temperature
Θ_a	0	advancing contact angle
Θ_d	0	dynamic contact angle
$\Theta_{\rm down}$	0	downstream contact angle
Θ_e	0	equilibrium contact angle
Θ_r	0	receding contact angle
Θ_s	0	static contact angle
$\Theta_{\rm up}$	0	upstream contact angle
Ξ	-	solid-liquid interface
Φ	m	level set distance function
Ω_l	-	liquid phase of the domain

solid phase of the domain

Lower case

-

\mathbf{Symbol}	SI base units	Description
α_l	m^2/s	thermal diffusivity of liquid phase
α_s	m^2/s	thermal diffusivity of solid phase
β	-	volume of fluid indicator function
δ	m	amplitude of sinusoidal perturbation
δ_c	m	capillary length
δ_d	m	thermal diffusion
γ_a	-	anisotropic factor
ϵ	-	parameter in marginal stability theory
κ_{lg}	1/m	curvature of liquid-gas interface
κ_{sl}	1/m	curvature of solid-liquid interface
λ	-	root of transcendental equation
λ_c	m	cutoff wavelength
λ_f	m	wavelength of fastest growing mode
λ_s	m	spacing between dendrites
$\tilde{\lambda_s}$	-	non-dimensional spacing between dendrites
μ	-	interaction parameter
μ_g	kg/(s m)	dynamic viscosity of the gaseous phase
μ_l	kg/(s m)	dynamic viscosity of the liquid phase
ν_g	m^2/s	kinematic viscosity of the gaseous phase
$ u_l$	m^2/s	kinematic viscosity of the liquid phase
ξ	-	material coordinate
ρ	$\rm kg/m^3$	density
$ ho_g$	$\rm kg/m^3$	density of gaseous phase
$ ho_l$	$\rm kg/m^3$	density of liquid phase
ρ_s	$\rm kg/m^3$	density of solid phase
σ	$\rm kg/s^2$	surface tension

σ_a	$\rm kg/s^2$	anisotropic surface tension
σ_{lg}	$\rm kg/s^2$	surface tension of liquid-gas interface
σ_{sl}	$\rm kg/s^2$	interfacial tension of solid-liquid interface
$ au_w$	$kg/(s^2 m)$	wall shear stress
$\tilde{\tau}$	-	non-dimensional time
ϕ	m^3/s	flux
ϕ_{gf}	m^3/s	flux at ghost face

Abbreviations

Symbol	Description
AMP	amplitude
AT	ambient temperature
ave	average
BC	boundary condition
CA	contact angle
CAH	contact angle hysteresis
CDS	central differencing scheme
CSF	continuum surface force
CV	control volume
DI	deionized
DNS	direct numerical simulations
FPS	frames per second
IB	immersed boundary
IDGE	isothermal dendritic growth experiments
IWT	icing wind tunnel/interfacial wave theory
LS	level set
MAC	marker and cell
max	maximum
MB	moving boundary
min	minimum
MST	marginal stability theory
MT	microsolvability theory
MVH	maximum velocity hypothesis
OMB	oscillator model of branching
PDMS	polydimethylsiloxane
PF	phase field
PISO	pressure implicit with splitting of operators
PMMA	polymethylmethacrylate
PTFE	polytetrafluoroethylene

SEILsurface engineering and instrumentation laboratorySHSsuperhydrophobic surfaceSIMPLEsemi-implicit method for pressure linked equationsSLDsupercooled large dropletTStest sectionULDGuniversal law of dendritic growthVOFvolume of fluid2Dtwo-dimensional3Dthree-dimensional	SCN	succinonitrile
SHSsuperhydrophobic surfaceSIMPLEsemi-implicit method for pressure linked equationsSLDsupercooled large dropletTStest sectionULDGuniversal law of dendritic growthVOFvolume of fluid2Dtwo-dimensional3Dthree-dimensional	SEIL	surface engineering and instrumentation laboratory
SIMPLEsemi-implicit method for pressure linked equationsSLDsupercooled large dropletTStest sectionULDGuniversal law of dendritic growthVOFvolume of fluid2Dtwo-dimensional3Dthree-dimensional	SHS	superhydrophobic surface
SLDsupercooled large dropletTStest sectionULDGuniversal law of dendritic growthVOFvolume of fluid2Dtwo-dimensional3Dthree-dimensional	SIMPLE	semi-implicit method for pressure linked equations
TStest sectionULDGuniversal law of dendritic growthVOFvolume of fluid2Dtwo-dimensional3Dthree-dimensional	SLD	supercooled large droplet
ULDGuniversal law of dendritic growthVOFvolume of fluid2Dtwo-dimensional3Dthree-dimensional	TS	test section
VOFvolume of fluid2Dtwo-dimensional3Dthree-dimensional	ULDG	universal law of dendritic growth
2D two-dimensional 3D three-dimensional	VOF	volume of fluid
3D three-dimensional	2D	two-dimensional
	3D	three-dimensional

Contents

At	ostrac	t	i
Κι	ırzfas	sung	iii
Ac	know	ledgements	v
No	omen	clature	vii
1	Intro 1.1 1.2 1.3 1.4 1.5 1.6	Jountion Icing - Technological Issues related to Icing	1 1 4 6 8 9 10 13 18 29 33 35
١.	Basi	ic Flows	38
2	Nor 2.1 2.2 2.3 2.4	nal Drop Impact in an Air Cross-Flow Computational Algorithm and Setup Experimental Setup Results Conclusions	39 39 44 45 49
3	Droj Con 3.1	Shedding by Air Cross-Flow at Ambient and Icing ditions Theoretical Background	51 52

Contents

	3.2	Model for the Estimation of Drag Force	55
	3.3	Experimental Setup	57
		3.3.1 Preparation of the Samples	59
		3.3.2 Procedure, Analysis and Post-Processing	62
	3.4	Experimental Results	64
		3.4.1 Drop Shedding at Ambient Temperature	64
		3.4.2 Drop Shedding under Icing Conditions	68
	3.5	Conclusions	77
	3.6	Crystallization Observed during Experiments	79
	. Co	mputations of Phenomena with Phase Change	82
4	Con	nputational Algorithm	83
	4.1	Numerical Methods for Free Surface Simulations	83
		4.1.1 Surface Fitting: Solid-Liquid Interface as a Moving	
		Boundary (MB) \ldots	83
		4.1.2 Surface Capturing: Volume of Fluid (VOF)	87
		4.1.3 Surface Capturing: Level Set (LS)	91
	4.2	The Algorithm	93
		4.2.1 Immersed Boundary Method	93
		4.2.2 Finite Volume Discretization of the Thermal Energy	
		Equation	94
		4.2.3 Implementation of the Capillary Undercooling	99
		4.2.4 Approximation of the Derivative in Normal Direction	99
		4.2.5 Extension of the Interface Velocity within a	
		Narrow-Band	103
		4.2.6 Update of the Level Set Function	105
		4.2.7 Principal Structure of the Algorithm	107
	4.3	Validation	110
		4.3.1 Stable Freezing: Planar Growth	110
		4.3.2 Transition: from Planar Stable Freezing to the	
		Unstable Growth of Dendrites	110
		4.3.3 Unstable Freezing: Influence of Surface Energy on	
		Dendritic Growth	112
	4.4	Conclusions	120
5	Sim	ulations of Needle-Like Dendrites	123
	5.1	Growth of Free Unidirectional Dendrites	123
		5.1.1 Closing Statement \ldots \ldots \ldots \ldots \ldots \ldots	126
	5.2	Array of Needle-Like Dendrites	126

	5.3	Growth of an Isolated Dendrite considering Kinetic Effects 5.3.1 Closing Statement	$\begin{array}{c} 130 \\ 133 \end{array}$
6	Crys 6.1 6.2	Stallization of a Supercooled Water Drop Modeling	135 135 140
III. Closing			141
7	Sum	nmary	143
8	Future Work		147
Α	Nor A.1 A.2	mal Drop Impact in an Air Cross-FlowSetup and CalibrationComplementary Results	151 151 152
В	Drop Con B.1 B.2	p Shedding by Air Cross-Flow at Ambient and Icing ditions Setup and Calibration Complementary Results	g 155 155 159
C	Con C.1 C.2	Profiling	163 163 165
D	Sup D.1 D.2 D.3	plementsGoverning Equations for Fluid FlowPressure Correction MethodsComputational Algorithm for Isothermal Fluid FlowsD.3.1 StructureD.3.2 Immersed Boundary MethodD.3.3 Calculation of the Drag CoefficientD.3.4 Preliminary Results	169 169 170 171 171 174 177 180
Bibliography			185
Lis	List of Figures		
Lis	List of Tables		