System- und Komponentenanalyse für hohen thermodynamischen Wirkungsgrad beim Ottomotor

Von der Fakultät für Maschinenbau der Technischen Universität Carolo-Wilhelmina zu Braunschweig

zur Erlangung der Würde

eines Doktor-Ingenieurs (Dr.-Ing.)

genehmigte Dissertation

von: aus (Geburtsort): Dipl.-Ing. Henning Heikes Unna

 eingereicht am:
 21.02.2014

 mündliche Prüfung am:
 27.05.2014

Referenten:

Prof. Dr.-Ing. Peter Eilts

Prof. Dr.-Ing. Peter-Wolfgang Manz Institut für Verbrennungskraftmaschinen Technischen Universität Carolo-Wilhelmina zu Braunschweig

Prof. Dr.-Ing. Jürgen Hammer

Institut für Verbrennungsmotoren und Kraftfahrwesen Universität Stuttgart / Robert Bosch GmbH

Berichte aus dem ivb

Band 2

Henning Heikes

System- und Komponentenanalyse für hohen thermodynamischen Wirkungsgrad beim Ottomotor

> Shaker Verlag Aachen 2014

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: Braunschweig, Techn. Univ., Diss., 2014

Copyright Shaker Verlag 2014 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8440-3155-3 ISSN 2199-708X

Shaker Verlag GmbH • Postfach 101818 • 52018 Aachen Telefon: 02407 / 95 96 - 0 • Telefax: 02407 / 95 96 - 9 Internet: www.shaker.de • E-Mail: info@shaker.de

Vorwort

Die vorliegende Dissertationsschrift entstand im Rahmen meiner Tätigkeit als Doktorand in der Forschung und Vorausentwicklung der Robert Bosch GmbH in Schwieberdingen.

Mein besonderer Dank gilt Herrn Prof. Dr.-Ing. Peter Eilts, dem Leiter des Instituts für Verbrennungskraftmaschinen an der Technischen Universität Carolo-Wilhelmina zu Braunschweig, für die Betreuung, welche diese Arbeit erst möglich gemacht hat, sowie die interessanten Diskussionen. Des Weiteren danke ich Herrn Prof. Dr.-Ing. Jürgen Hammer für das Korreferat und die gewinnbringenden Rückmeldungen während zahlreicher Projekt-Reviews. Ebenfalls Dank gilt Herrn Prof. Dr.-Ing Peter-Wolfgang Manz für sein Interesse an meiner Arbeit und die Teilnahme am Promotionsverfahren.

Herrn Dr.-Ing. Thorsten Raatz danke ich für Anregung und Betreuung des Promotionsthemas, das Korrekturlesen sowie die Schaffung der exzellenten Randbedingungen für die hier dargestellten Untersuchungen. In diesem Zusammenhang gilt ein besonderer Dank den Herren Thorsten Heidinger, Andreas Eckert und Jürgen Etzel für Ihre Unterstützung in technischen Belangen, ohne die ein so produktiver und flexibler Betrieb des Motorenprüfstandes nicht möglich gewesen wäre. Außerdem danke ich Herrn Matthias Zink und Dr.-Ing. Martin Brandt für die fruchtvollen Diskussionen (nicht nur im Zusammenhang mit simulativen Fragestellungen) sowie den Kollegen Christian Linder und Dr.-Ing. Michael Staudt für ihre Denkanstöße. Ebenfalls anregende Diskussionen ergaben sich zu jeder Zeit mit meinen Doktorandenkollegen Tobias Trzebiatowski, Christian Wiegand und Jan Dyckmans. Für das Korrekturlesen danken möchte ich weiterhin Herrn Dr.-Ing. Thomas Bossmeyer und Matthias Mansbart, die trotz des späteren Hinzustoßens stets ein reges Interesse an meiner Arbeit gezeigt haben. Für die Unterstützung bei den Messungen am Vollmotor danke ich den Herren Marco Pätzold, Sven Haubold und Jean-Philippe Bronner – nicht zu vergessen allen anderen hier nicht namentlich erwähnten Kollegen, die mich mit Rat und Tat unterstützt und für eine angenehme Arbeitsatmosphäre gesorgt haben.

Außerdem bedanke ich mich für den hohen Einsatz der beteiligten Studenten, die – sei es im Rahmen eines Praktikums oder einer Abschlussarbeit – stets eine große Hilfe waren. Besonders seien hier die Beiträge von Herrn Domagoj Zovak und Herrn Frederik Thole herausgestellt.

Nicht zuletzt gilt mein Dank meinen Eltern Ingrid und Jan-Walter Heikes sowie meinem Bruder Daniel Heikes, ohne deren Unterstützung während meines bisherigen Werdegangs ich die Arbeit nicht in dieser Form hätte leisten können. Insbesondere danke ich meiner Frau Sylvia für das Korrekturlesen sowie für die fortwährende Motivation und ihr Verständnis für diverse Stunden meiner Abwesenheit.

Abstract

Die vorliegende Arbeit befasst sich mit der Identifikation und Bewertung verschiedener wirkungsgradsteigernder Maßnahmen am Downsizing-Ottomotor. Ziel ist die Entwicklung einer geschlossenen Methodik zur objektiven Bewertung diverser Verbrauchsmaßnahmen unter Berücksichtigung des tatsächlich auftretenden Lastkollektivs und die Anwendung dieser Methodik für verschiedene Verfahrensweisen zur Optimierung eines hochaufgeladenen homogenen ottomotorischen Brennverfahrens.

Zu diesem Zweck wird eine bestehende kinematische Zyklussimulation um eine innermotorische Verlustteilung erweitert, um detaillierte Rückschlüsse auf die Verlustquellen am Downsizing-Ottomotor zu ziehen. Die dargestellten Untersuchungen werden sowohl am Einzylinder- als auch am turboaufgeladenen 1,2l-Dreizylinder-Vollmotor durchgeführt und durchgängig mittels Od-Analyse und 1d-Strömungssimulation begleitet. Für die Validierung der Ergebnisse der Zyklussimulation steht zusätzlich ein Demonstratorfahrzeug mit dem Downsizing-Versuchsmotor zur Verfügung. Bei dem Versuchsträger handelt es sich um einen hochaufgeladenen Direkteinspritzer-Ottomotor mit zentraler Injektorlage und Phasenverstellung an Ein- und Auslassnockenwelle. Die Aufladung erfolgt am Vollmotor über einen einstufigen Wastegate-Turbolader, der durch hohe Spülraten effektive Mitteldrücke von 30 bar schon bei niedriger Drehzahl und eine spezifische Leistung von 100 kW/l ermöglicht.

Mithilfe der entwickelten Zyklusverlustteilung werden diverse Maßnahmen unter Berücksichtigung ihrer Auswirkungen auf das Gesamtsystem in Hinsicht auf ihre Wirkungsgradpotenziale bewertet. Zunächst werden mit interner und externer Abgasrückführung, homogenem Magerbetrieb und spätem Einlassschließen verschiedene Möglichkeiten zur Entdrosselung betrachtet, weil eine Analyse der Verluste des Demonstratorfahrzeugs im Neuen Europäischen Fahrzyklus trotz des hohen Downsizing-Grades hier noch Potenziale für eine Verbrauchsreduktion zeigt. Einen weiteren Schwerpunkt stellt die Optimierung des Verdichtungsverhältnisses hochaufgeladener Ottomotoren dar, da hier infolge der erhöhten Klopfneigung Einschränkungen im Vergleich zu Saugmotoren bestehen. Zu diesem Zweck werden verschiedene Verdichtungen und deren Kombination mit klopfreduzierenden Maßnahmen beleuchtet. Neben dem späten Einlassschließen, welches durch eine Reduktion der effektiven Verdichtung die Verdichtungsendtemperatur und damit die Prozesstemperaturen und Klopfneigung herabsetzt, wird eine gekühlte externe Abgasrückführung mit einer Entnahme vor und nach 3-Wege-Katalysator untersucht. Besonderes Augenmerk wird im Zusammenhang mit der Verdichtungsanhebung auf die notwendige Zündspannung gelegt, da diese mit steigender Dichte im Brennraum zunimmt. Anhand der durchgeführten Messungen wird eine empirische Berechnungsformel zur Bestimmung des Zündspannungsbedarfs in Abhängigkeit der Dichte zum Zündzeitpunkt und des Elektrodenabstandes der Zündkerze aufgestellt. Mithilfe der am Einzylinder gewonnenen Daten werden erhöhte Verdichtung und Ventilsteuerzeiten mit spätem Einlassschließen für den Vollmotor ausgelegt und die ermittelten Potenziale an diesem bestätigt.

Als Maßnahme zur Beeinflussung des Realverbrauches bei hohen Fahrgeschwindigkeiten werden zwei Möglichkeiten zur Reduktion des aus Bauteilschutzgründen notwendigen Anfettungsbedarfs untersucht: zum Einen eine gekühlte Abgasrückführung und zum Anderen die Verwendung eines Turboladers mit erhöhter zulässiger Turbineneintrittstemperatur.

Die entwickelte Methodik für den objektiven Vergleich verschiedener Verbrauchsmaßnahmen wird exemplarisch am Downsizing-Ottomotor angewendet und steht im Weiteren für die Bewertung anderer Konzepte und Systeme zur Verfügung.

Inhaltsverzeichnis

Symbolverzeichnis IV				
Ał	obildu	ingsverzeichnis	XII	
Та	belle	nverzeichnis	XXIII	
1	Einl	leitung		
2	Grundlagen und Kenntnisstand			
	2.1	Downsizing	3	
	2.2	Thermodynamische Verlustteilung	7	
	2.3	Verdichtungsverhältnis	17	
	2.4	Abgasrückführung	20	
	2.5	Magerbetrieb	22	
	2.6	Spätes und frühes Einlassschließen	24	
3	Verv	wendete Versuchsträger, Messtechnik und Auswertealgorithmen	27	
	3.1	Hochaufgeladener Extrem-Downsizing-Ottomotor	28	
	3.2	Demonstratorfahrzeug	31	
	3.3	Vorgehen bei den experimentellen Untersuchungen	31	
		3.3.1 Am Einzylindermotor vermessener Kennfeldbereich	32	
		3.3.2 Verwendeter Kraftstoff	33	
		3.3.3 Einstellung des Gegendrucks am Einzylindermotor	33	
		3.3.4 Definition der Klopfgrenze	36	
		3.3.5 Definition der Stabilitätsgrenze der Verbrennung	36	
	3.4	Beschreibung der verwendeten Auswerte- und Simulationsroutinen $\ \ldots \ \ldots$.	37	
		3.4.1 Thermodynamische Analyse	38	
		3.4.2 Motorsimulation	39	
		3.4.3 Zyklussimulation	40	
4	Iden	tifikation von Wirkungsgradpotenzialen mittels Zyklussimulation	42	
	4.1	Vergleich der verwendeten Fahrzyklen	42	
	4.2	Vergleich von Zyklussimulation und Messergebnissen	46	
	4.3	Vergleich von NEFZ und anderen Fahrzyklen	48	
	4.4	Auswirkung der Optimierung des Leerlaufbetriebs im NEFZ	51	
	4.5	Vergleich des Extrem-Downsizing-Motors mit einem Saugmotor im NEFZ $\ .$.	52	
	4.6	Vergleich von Einzylinder- und Vollmotormessung im NEFZ \hdots	53	

5	Mal	Snahme	en zur Entdrosselung im saugmotorischen Betrieb	56
	5.1	Abgas	srückführung	56
		5.1.1	Interne Abgasrückführung	56
		5.1.2	Externe Abgasrückführung	58
		5.1.3	Vergleich von interner und externer Abgasrückführung	61
		5.1.4	Verbrennungsstabilisierung durch Doppeleinspritzung	63
	5.2	Homo	gener Magerbetrieb	67
		5.2.1	Einfluss auf die motorischen Kenngrößen	67
		5.2.2	Verbrennungsstabilisierung durch Doppeleinspritzung	71
	5.3	Vergle	eich von Abmagerung und Abgasrückführung bei Teillast	74
	5.4	Späte	s Einlassschließen	76
		5.4.1	Einfluss auf den Ladungswechsel bei niedriger Last	76
		5.4.2	Einfluss auf die motorischen Kenngrößen bei niedriger Last $\ \ldots \ \ldots$	78
	5.5	Verbr	auch spotenziale der entdrosselnden Maßnahmen im NEFZ $\ .\ .\ .\ .$	80
		5.5.1	Potenzial der Ladungsverdünnung durch externe Abgasrückführung	80
		5.5.2	Potenzial der Ladungsverdünnung durch Abmagerung	81
		5.5.3	Potenzial des späten Einlassschließens	83
6	Opt	imieru	ng des Verdichtungsverhältnisses	85
	6.1	Einflu	ss des Verdichtungsverhältnisses auf die motorischen Kenngrößen	86
		6.1.1	Einfluss auf Schwerpunktlage und Wirkungsgrad	86
		6.1.2	Einfluss auf Kenngrößen der Verbrennung	88
		6.1.3	Einfluss auf das Klopfverhalten	89
		6.1.4	Verbrauchspotenziale in NEFZ und WLTC	90
		6.1.5	Einfluss der Verdichtung auf den Zündspannungsbedarf	91
	6.2	Reduz	zierung der Klopfneigung durch spätes Einlassschließen	94
		6.2.1	Einfluss auf Schwerpunktlage und Wirkungsgrad	94
		6.2.2	Untersuchung des Spülverhaltens mittels schneller Flammen-Ionisations-	
			Detektion	97
		6.2.3	Analyse der thermodynamischen Verluste	104
		6.2.4	Einfluss der Einlassventilsteuerzeit auf Klopfverhalten und Wirkungsgrad	105
		6.2.5	Einfluss auf Kenngrößen der Verbrennung	108
		6.2.6	Einfluss auf das Klopfverhalten	109
	6.3	Reduz	zierung der Klopfneigung durch Abgasrückführung	110
		6.3.1	Einfluss auf Schwerpunktlage und Wirkungsgrad	111
		6.3.2	Einfluss auf Kenngrößen der Verbrennung	113
		6.3.3	Einfluss auf das Klopfverhalten	115
		6.3.4	Einfluss von erhöhtem internen Restgasgehalt und Temperatur $\ .\ .$.	116
		6.3.5	Vergleich von Abgasrückführung und spätem Einlassschließen $\ . \ . \ .$	118
	6.4	Homo	gener Magerbetrieb bei hoher Last	123
		6.4.1	Einfluss auf Schwerpunktlage und Wirkungsgrad	123
		6.4.2	Einfluss auf Kenngrößen der Verbrennung	123
		6.4.3	Einfluss auf das Klopfverhalten	124
		6.4.4	Vergleich von Abmagerung und Abgasrückführung bei hoher Last	125

	6.5 Umsetzung am Vollmotor		127	
		6.5.1	Auslegung des Brennverfahrens in Kombination mit minimaler Hybridisie-	
			rung	127
		6.5.2	Verhalten der motorischen Kenngrößen am Vollmotor	128
		6.5.3	Reduzierung der unverbrannten Kohlenwasserstoffe durch Doppeleinsprit-	
			zung	131
		6.5.4	Verbrauchspotenziale in NEFZ und WLTC am Vollmotor	136
		6.5.5	Einfluss auf die Vorentflammungsneigung	138
7	Red	uzierur	ng des Anfettungsbedarfs bei hohen Lasten	139
	7.1	Einsat	z von gekühlter externer Abgasrückführung	140
	7.2	Erhöh	ung der zulässigen Turbineneintrittstemperatur	145
	7.3	Vergle	ich beider Maßnahmen und Fazit	148
8	Zus	ammen	fassung und Ausblick	149
Lit	teratı	urverze	ichnis	154
Ar	nhang	r		165
	А	Grund	llagen und Kenntnisstand	165
	В	Zyklus	ssimulation	166
	\mathbf{C}	Maßna	ahmen zur Entdrosselung im saugmotorischen Betrieb	169
	D	Optin	ierung des Verdichtungsverhältnisses	173

Symbolverzeichnis

Abkürzungen

ACEA	Association des Constructeurs Européens
	d'Automobiles
AGR	Abgasrückführung
AK	Auslasskanal
ASB	Ansteuerbeginn Einspritzung
AV	Auslassventil
BRS	Boost Recuperation System – Riemen-Starter-
	Generator
CADC	Common Artemis Driving Cycle
CFD	Computational Fluid Dynamics
DHC	Development of Harmonized Driving Cycle
E1/2	Abgasentnahmestelle 1 bzw. 2
eAGR	externe Abgasrückführung
EK	Einlasskanal
ES	Einlassschließen
$\mathrm{ES1}/2$	Einspritzung 1 bzw. 2
EV	Einlassventil
EZV	elektrischer Zusatzverdichter
EÖ	Einlassöffnen
FFID	schnelle Flammen-Ionisations-Detektion
FID	Flammen-Ionisations-Detektion
FKFS	Fahrzyklus des Forschungsinstituts für Kraft-
	fahrwesen und Fahrzeugmotoren Stuttgart
FSN	Filter Smoke Number
FTP75	Federal Test Procedure 75
GOT	oberer Totpunkt im Gaswechseltakt
GR	Gleichraumprozess
GRPE	Groupe de travail de la pollution et de l'énergie
GUT	unterer Totpunkt nach Gaswechseltakt
iAGR	interne Abgasrückführung
KAT	3-Wege-Katalysator
LW	Ladungswechsel
LWA	Ladungswechselanalyse
MEXA	Standard-Abgasanalyseanlage
NEFZ	Neuer Europäischer Fahrzyklus
OT	oberer Totpunkt im Arbeitstakt

PLU 131 STS	Shot-to-Shot Kraftstoffmesseinrichtung nach
	dem Verdrängerzählerprinzip
PLU 401/121	Kraftstoffmesseinrichtung nach dem Verdrän-
	gerzählerprinzip
%p	Prozentpunkte
SCR	Selective Catalytic Reduction – selective kata-
	lytische Reduktion
SES	Spätes Einlassschließen
SIM	Simulation
SS	Start/Stopp
US06	Supplemental Federal Test Procedure
UT	unterer Totpunkt
VAR13	Variante der 2. Abgasentnahmestelle 1 bis 3
Vari	Variation
WLTC	Worldwide Light Duty Harmonized Test Pro-
	cedure – Development of Harmonized Driving
	Cycle
WLTP	Worldwide Light Duty Harmonized Test Proce-
	dure
ZZP	Zündzeitpunkt

Formelzeichen

A	experimentell ermittelte Gaskonstante A	$[(mm bar)^{-1}]$
AA	Aussetzeranteil	[%]
AGR	Abgasrückführrate	[%]
Arbeitsv. Wand.	Arbeitsverlust durch Wandwärme	[%p]
В	experimentell ermittelte Gaskonstante B	$[kV(mm bar)^{-1}]$
BD_{5-95}	Brenndauer von 5% bis 95% Massenum satz	[°KW]
$b_{\rm e}$	effektiver spezifischer Verbrauch	[g/kWh]
b_{i}	indizierter spezifischer Verbrauch	[g/kWh]
$B_{\rm Kra}$	spezifischer volumetrischer Verbrauch	[1/100 km]
CO_2	spezifische Kohlendioxid-Emissionen	[g/km]
CoV	relative Standardabweichung des indizierten	[%]
	Mitteldruckes	
$c_{\rm p}$	spezifische Wärmekapazität (bei konstantem	[J/kgK]
	Druck)	
$c_{\rm pA}$	spezifische Wärmekapazität des Abgases (bei	[J/kgK]
	konstantem Druck)	
$c_{\rm pV}$	spezifische Wärmekapazität des verdichteten	[J/kgK]
	Gases (bei konstantem Druck)	
C_{U1}	erste experimentell ermittelte Konstante zur	[kV]
	Berechnung der Sekundärspannung	
C_{U2}	zweite experimentell ermittelte Konstante zur	[kV/mm]
	Berechnung der Sekundärspannung	

$C_{\rm U3}$	dritte experimentell ermittelte Konstante zur	$[kVm^3/kg]$
	Berechnung der Sekundärspannung	
$C_{\rm U4}$	vierte experimentell ermittelte Konstante zur	$[kVm^3/(kgmm)]$
	Berechnung der Sekundärspannung	
$c_{\rm v}$	spezifische Wärmekapazität (bei konstantem	[J/kgK]
	Volumen)	
d	Schlagweite	[mm]
$\delta B_{\rm Kra}$	relative Änderung des spezifischen volumetri-	[%]
	schen Verbrauchs	
δCO_2	relative Änderung der spezifischen Kohlen-	[%]
	dioxid-Emissionen	
$\delta E_{\rm Kra}$	relative Änderung der spezifischen Kraftstoff-	[%]
	energie im Fahrzyklus	
$\Delta \eta$	absolute Änderung des Wirkungsgrades	[%p]
$\delta \eta$	relative Änderung des Wirkungsgrades	[%]
$\delta \eta_{\rm e}$	relative Änderung des effektiven Wirkungsgra-	[%]
	des bezogen auf die Referenzvariation	
$\delta \eta_{\rm i}$	relative Änderung des indizierten Wirkungsgra-	[%]
	des bezogen auf die Referenzvariation	
$\delta \eta_{i \text{ Start}}$	relative Änderung des indizierten Wirkungsgra-	[%]
	des bezogen auf den Startwert der Variation	
$\Delta \varphi_{ASE2-ZZP}$	Abstand von Ansteuerende der 2. Einspritzung	[°KW]
	zu Zündzeitpunkt	
$\Delta \varphi_{\rm ZZP-5}$	Zündverzug von Zündzeitpunkt bis zu 5% Mas-	[°KW]
	senumsatz	
$\delta \Pi_{\rm T}$	relatives Turbinendruckverhältnis bezogen auf	[%]
	den Startwert der Variation	
$\delta P_{\rm V}$	relative Verdichterleistung bezogen auf den	[%]
	Startwert der Variation	
$\Delta U_{\rm sek\ min}$	Änderung der minimalen Sekundärspannung	[kV]
$\delta W_{\rm e}$	relative Änderung der spezifischen effektive	[%]
	Arbeit im Fahrzyklus	
ε	Verdichtungsverhältnis	[-]
EA	Elektrodenabstand	[mm]
$\epsilon_{\rm geo}$	geometrisches Verdichtungsverhältnis	[-]
$E_{\rm Kra}$	spezifische Kraftstoffenergie im Fahrzyklus	[kWh/100km]
ϵ_{th}	thermodynamisches Verdichtungsverhältnis	[-]
$\epsilon_{V_{eff}, \overline{p_S}}$	wirksames effektives Verdichtungsverhältnis aus	[-]
- 5	mittlerem Saugrohrdruck	
$\epsilon_{\rm V_{eff, PS/ES}}$	wirksames effektives Verdichtungsverhältnis aus	[-]
0,20	Saugrohrdruck bei Einlassschließen	
$\epsilon_{\rm V_{ES}}$	wirksames Verdichtungsverhältnis aus Volumen	[-]
	bei Einlassschließen	

$f_{\rm HCCO Res}$	Faktor zur Berechnung des Anteils an rückge-	[-]
	führter Energie der Emissionen	
FHR_{50}	Schwerpunktlage des Heizverlaufs	[°KW nOT]
$f_{\rm Mix}$	Mischungsfaktor	[-]
γ	Rückwirkungskoeffizient	[-]
$GR~m.~\epsilon_{\rm th}$	Verlust durch ideale Gleichraumprozessfüh-	[%p]
	rung mit thermodynamischem Verdichtungsver-	
	hältnis	
GR m. HCCO	Verlust durch ideale Gleichraumprozessführung	[%p]
	mit Emissionsverlusten	
$GR m. MFB_{50}$	Verlust durch ideale Gleichraumprozessführung	[%p]
	mit realer Verbrennungsschwerpunktlage	
GR m. re. Ladg.	Verlust durch ideale Gleichraumprozessführung	[%p]
	mit realer Ladungszusammensetzung	
η	Wirkungsgrad	[%]
η_{Br}	Energiebilanz der Brennverlaufsanalyse bei	[%]
	Brennende	
$HC_{\rm FFID} AK$	Konzentration der unverbrannten Kohlenwas-	[ppm]
	serstoffe gemessen mit schneller Flammen-	
	Ionisations-Detektion im Auslasskrümmer	
$HC_{\rm FFID} EK$	Konzentration der unverbrannten Kohlenwas-	[ppm]
	serstoffe gemessen mit schneller Flammen-	
	Ionisations-Detektion im Einlasskrümmer	
$\eta_{\rm e}$	effektiver Wirkungsgrad	[%]
$\eta_{ m GR}$	idealer Gleichraumprozesswirkungsgrad	[%]
$\eta_{\rm GR}$ m. $\epsilon_{\rm geo}$	Gleichraumprozesswirkungsgrad mit geometri-	[%]
	schem Verdichtungsverhältnis	
$\eta_{\rm GR}$ m. $\epsilon_{\rm th}$	Gleichraumprozesswirkungsgrad mit thermody-	[%]
	namischem Verdichtungsverhältnis	
$\eta_{\rm GR}$ m. HCCO	Gleichraumprozesswirkungsgrad mit realen	[%]
	Emissionen	
$\eta_{\rm GR}$ m. MFB ₅₀	Gleichraumprozesswirkungsgrad mit realer	[%]
	Verbrennungsschwerpunktlage	
$\eta_{\rm GR}$ m. re. Ladg.	Gleichraumprozesswirkungsgrad mit realer	[%]
	Ladungszusammensetzung	
η_{i}	indizierter Wirkungsgrad	[%]
η_{KP} m. id. LW	Kreisprozesswirkungsgrad mit idealem	[%]
	Ladungswechsel	
$\eta_{\rm KP}$ m. re. Brennd.	Kreisprozesswirkungsgrad mit realer Brenn-	[%]
	dauer	
η_{KP} m. re. Expan.	Kreisprozesswirkungsgrad mit realer Expansion	[%]
$\eta_{\rm KP}$ m. re. Kalorik	Kreisprozesswirkungsgrad mit realer Kalorik	[%]
$\eta_{\rm KP}$ m. re. Kompr.	Kreisprozesswirkungsgrad mit realer Kompres-	[%]
	sion	

$\eta_{\rm KP}$ m. re. LW	Kreisprozesswirkungsgrad mit realem Ladungs- wechsel	[%]
$\eta_{\rm KP}$ m. re. Wandw.	Kreisprozesswirkungsgrad mit realer Wand- wärme	[%]
$n_{\rm m}$	mechanischer Wirkungsgrad des Abgasturbo-	[%]
-7111	laders	[,]
$\eta_{ m siT}$	innerer isentroper Wirkungsgrad der Turbine	[%]
$\eta_{ m siV}$	innerer isentroper Wirkungsgrad des Verdich-	[%]
	ters	
$H_{\rm u}$	unterer Heizwert	[MJ/kg]
$h_{\rm V}$	Ventilhub	[mm]
$I_{\rm ES}$	Injektoransteuerstrom	[A]
iNO _x	indizierte spezifische Stickoxid-Emissionen	[g/kWh]
iX_{Res}	interner Restgasgehalt	[%]
φ	Kurbelstellung	[°KW]
φ_{ASB}	Kurbelstellung zum Ansteuerbeginn der Ein-	[°KW]
	spritzung	
$\varphi_{\rm E\ddot{O}}$	Kurbelwinkel Einlassöffnen bezogen auf 0,5mm	[°KW]
20	Ventilhub	
$\varphi_{\rm ES}$	Kurbelwinkel Einlassschließen bezogen auf	[°KW]
	0,5mm Ventilhub	
φ_{Verb}	Kurbelstellung zum Zeitpunkt der Verbrennung	[°KW]
$\varphi_{\rm ZZP}$	Kurbelstellung zum Zündzeitpunkt	[°KW nOT]
κ	Isentropenexponent	[-]
$\kappa_{\rm A}$	Isentropenexponent des Abgases	[-]
$\kappa_{\rm Exp}$	Isentropenexponent während der Expansion	[-]
$\kappa_{\rm Kom}$	Isentropenexponent während der Kompression	[-]
KP	mittlerer Klopfindex aller Arbeitsspiele	[bar]
KP_{Max}	maximaler Klopfindex aller Arbeitsspiele	[bar]
$KP_{\rm Zyklus}$	zyklusindividueller Klopfindex der Arbeits- spiele	[bar]
<i>К.</i>	Isentropenexponent der unverbrannten Zylin-	[-]
, •u	derladung	[]
κv	Isentropenexponent des verdichteten Gases	[-]
Kar	Isentropenexponent der verbrannten Zvlinder-	[-]
· · · v	ladung	[]
KVorb	Isentropenexponent der Zvlinderladung wäh-	[-]
Verb	rend der Verbrennung	[]
λ	Luft-Kraftstoff-Verhältnis	[-]
λ_{global}	globales Luft-Kraftstoff-Verhältnis	[-]
λ_{Ref}	globales Referenz-Luft-Kraftstoff-Verhältnis	[-]
	(stöchiometrisch)	. 1
λ_{riick}	Luft-Kraftstoff-Verhältnis der in das Saugrohr	[-]
Luth	zurückströmenden Zylinderladung	

$L_{\rm st}$	stöchiometrischer Luftbedarf	[-]
λ_{Zyl}	Luft-Kraftstoff-Verhältnis im Brennraum	[-]
\dot{m}	Massenstrom	[g/s]
m	Masse	[kg]
$\dot{m}_{ m AV}$	Massenstrom durch Auslassventil	[g/s]
$\dot{m}_{\rm EV}$	Massenstrom durch Einlassventil	[g/s]
MFB_5	5% Massenumsatz	[°KW nOT]
MFB_{50}	Verbrennungsschwerpunktlage	[°KW nOT]
MFB_{95}	95% Massenumsatz	[°KW nOT]
$\dot{m}_{\rm kor}$	korrigierter Massenstrom	[kg/s]
$m_{\rm Kra}$	Kraftstoffmasse pro Arbeitsspiel	[mg/ASP]
$m_{\rm Kra}$ AV	durchgespülte Kraftstoffmasse pro Arbeitsspiel	[mg/ASP]
	durch Auslassventil	
m _{Kra.} Übers.	überschüssige Kraftstoffmasse pro Arbeitsspiel	[mg/ASP]
$m_{ m L}$	Luftmasse pro Arbeitsspiel	[mg/ASP]
$m_{\rm L}$ AV	durchgespülte Luftmasse pro Arbeitsspiel durch	[mg/ASP]
	Auslassventil	
$m_{\rm L} \ {\rm EV}_{ m rück}$	durch das Einlassventil zurückströmende Luft-	[mg/ASP]
	masse pro Arbeitsspiel	
$m_{\rm L} \ {\rm EV_{rück}} \ {\rm Mix}$	durch das Einlassventil zurückströmende Luft-	[mg/ASP]
	masse pro Arbeitsspiel nach der Durchmi-	
	schung	
$m_{\rm L, \ Übers.}$	überschüssige Luftmasse pro Arbeitsspiel	[mg/ASP]
$m_{ m MFB_{50}}$	Anstieg der Schwerpunktlage an der Klopf-	$[^{\circ}KW/bar]$
	grenze über der indizierten Last	
$m_{\rm Res}$	Gesamt-Restgasmasse pro Arbeitsspiel	[mg/ASP]
$\dot{m}_{ m V}$	Verdichtermassenstrom	[kg/s]
$m_{\rm Zyl}$	Gesamtmasse im Zylinder	[mg/ASP]
n	Motordrehzahl	$[\min^{-1}]$
$n_{\rm ATL}$	Turboladerdrehzahl	$[\min^{-1}]$
p	Druck	[bar]
$p_{\rm Abg}$	Abgasgegendruck	[mbar]
$p_{\rm AK}$	Druck im Auslasskanal	[bar]
$P_{\rm e}$	effektive Leistung	[kW]
$p_{\rm EK}$	Druck im Einlasskanal	[bar]
p_{Komp}	in der Kompressionsphase linear approximierter	[bar]
-	Zylinderdruck	
$p_{\rm me}$	effektiver Mitteldruck	[bar]
p_{mi}	indizierter Mitteldruck (720°KW)	[bar]
$p_{ m mi~HD}$	indizierter Mitteldruck der Hochdruckschleife	[bar]
	(360°KW)	
$p_{\rm mi\ Komp}$	indizierter Mitteldruck inklusive Kompressions-	[bar]
*	verlusten	

$p_{\rm mi~ND}$	indizierter Mitteldruck der Niederdruckschleife	[bar]
	(360°KW)	0.1
$p_{\rm mr}$	Reibmitteldruck	[bar]
p_{Rail}	Kraftstoffdruck im Common Rail System	[bar]
$p_{\rm S}$	Saugrohrdruck	[mbar]
$p_{ m S/ES}$	Saugrohrdruck zum Zeitpunkt des Einlass-	[mbar]
	schließens	
Π_{T}	Turbinendruckverhältnis	[-]
$\Pi_{\rm tot}$	totales Druckverhältnis	[-]
$P_{\rm V}$	Verdichterleistung	[W]
$p_{\rm Zyl}$	Zylinderdruck	[bar]
$Q_{\rm ab}$	abgeführte Energie	[J]
$Q_{\rm b}$	Brennverlauf	$[J/^{\circ}KW]$
$Q_{\rm Br}$	Energiefreisetzung bei Brennende	[J]
$Q_{\rm HC}$	Energie der unverbrannten Kohlenwasserstoffe	[J]
$Q_{\rm HCCO}$	Energie der unverbrannten Kohlenwasserstoffe	[J]
	und Kohlenmonoxid-Emissionen	
$Q_{\rm Kra}$	Kraftstoffenergie	[J]
$Q_{\rm zu}$	zugeführte Energie	[J]
Reale Brennd.	Verlust durch reale Brenndauer	[%p]
Reale Kalorik	Verlust durch reale Kalorik	[%p]
$R_{\rm s}$	spezifische Gaskonstante	[J/kgK]
$\rho_{\rm ZZP}$	Dichte zum Zündzeitpunkt	$[\mathrm{kg/m^3}]$
σ	Standardabweichung	[-]
SZ	Schwärzungszahl	[FSN]
Т	Temperatur	$[^{\circ}C]$
t	Zeit	[s]
T_{2s}	Verdichtungsendtemperatur bei isentroper Ver-	[K]
	dichtung	
$T_{\rm AGR}$	Temperatur des Abgases vor der Einleitung in	$[^{\circ}C]$
	das Saugrohr	
ti	Injektoransteuerdauer	[µs]
t_{i2}	Injektoransteuerdauer der Zweiteinspritzung	[µs]
$T_{\rm Kr}$	gemessene Temperatur im Abgaskrümmer	[°C]
$T_{\rm Raum}$	Raumtemperatur	$[^{\circ}C]$
$T_{\rm S}$	gemessene Temperatur im Saugrohr	$[^{\circ}C]$
$T_{\rm v}$	Temperatur der verbrannten Zylinderladung	[K]
$U_{\rm d}$	Durchschlagsspannung	[kV]
$U_{\rm sek}$	Sekundärspannung	[kV]
V'	Zylindervolumen zur Berechnung der effektiven	$[\mathrm{cm}^3]$
	Verdichtung	
V	Volumen	$[\mathrm{cm}^3]$
v	Geschwindigkeit	$[\rm km/h]$
$V_{\rm c}$	Kompressionsvolumen	$[cm^3]$

$V_{\text{eff}, \overline{p_{\mathrm{S}}}}$	Volumen berechnet aus mittlerem Saugrohr-	$[cm^3]$
	druck	
$V_{\rm eff, \ p_{S/ES}}$	Volumen berechnet aus Saugrohrdruck bei Ein-	$[cm^3]$
	lassschließen	
$V_{\rm ES}$	Volumen bei Einlassschließen	$[cm^3]$
$V_{\rm H}$	Gesamtmotor-Hubvolumen	$[\mathrm{cm}^3]$
$V_{\rm h}$	Einzelzylinder-Hubvolumen	$[cm^3]$
W	Arbeit	[J]
$W_{\rm e}$	spezifische effektive Arbeit im Fahrzyklus	[kWh/100km]
WG	Wastegate-Stellung	[%]
$w_{\rm sV}$	spezifische isentrope Verdichterarbeit	[J]
$x_{ m b}$	normierter Summenbrennverlauf	[%]
X_{Fang}	Fanggrad	[%]
$X_{\rm Res}$	Gesamt-Restgasgehalt	[%]
$X_{\rm Verd}$	massebezogene Verdünnungsrate	[%]

Chemische Symbole

CO	Kohlenstoffmonoxid	[%]
CO_2	Kohlenstoffdioxid	[%]
HC	unverbrannte Kohlenwasserstoffe	[ppm]
NO	Stickstoffmonoxid	[ppm]
NO_2	Stickstoffdioxid	[ppm]
NO _x	Summe der Stickoxide NO und NO_2	[ppm]

Indizes

k allgemeine Zählvariable n nach S Simulation v vor VM Vollmotormessung	EM	Einzylindermessung
n nach S Simulation v vor VM Vollmotormessung	k	allgemeine Zählvariable
S Simulation v vor VM Vollmotormessung	n	nach
v vor VM Vollmotormessung	S	Simulation
VM Vollmotormessung	v	vor
	VM	Vollmotormessung

Abbildungsverzeichnis

Abb. 1.1	Zeitliche Entwicklung der spezifischen Leistung von Großserien-Pkw-	
	Motoren nach [Golloch, 2005] erweitert um Daten bis 2012 $\ \ldots$.	1
Abb. 2.1	Betriebspunktverschiebung durch Hubraumreduktion und Aufladung	4
Abb. 2.2	Maximaler Mitteldruck, Nenndrehzahl und Verdichtungsverhältnis ak- tueller Phys Ottomotoren (linke Seite nach [Collegh 2005] anweitert um	
	Datan für Motoran der rechten Seite)	5
Abb 23	Erhöhung des erreichbaren Ladedrucks durch Brennraumspülung	7
Abb 2.4	Verlust durch ideale Gleichraumprozessführung mit geometrischer Ver-	'
1100. 2.1	dichtung	9
Abb. 2.5	Verlust durch ideale Gleichraumprozessführung mit thermodynamischer	Ŭ
11001 210	Verdichtung	10
Abb. 2.6	Verlust durch reale Ladungszusammensetzung	11
Abb. 2.7	Verlust durch reale Verbrennungsschwerpunktlage	11
Abb. 2.8	Verlust durch unvollständige und unvollkommene Verbrennung	12
Abb. 2.9	Verlust durch realen Brennverlauf bzw. reale Brenndauer	12
Abb. 2.10	Verlust durch reale kalorische Eigenschaften des Arbeitsgases	13
Abb. 2.11	Verlust durch Wandwärme	14
Abb. 2.12	Verlust durch unvollständige Expansion	14
Abb. 2.13	Verlust durch unvollständige Kompression	15
Abb. 2.14	Verlust durch idealen Ladungswechsel	15
Abb. 2.15	Verlust durch realen Ladungswechsel	16
Abb. 2.16	Ergebnis der beschriebenen Verlustteilung am Beispiel eines Teillast-	
	betriebspunktes am DI-Ottomotor	17
Abb. 2.17	Idealer Gleichraumwirkungsgrad in Abhängigkeit von Verdichtung, Tem-	
	peratur und Stoffdaten nach [Heywood, 1988]	19
Abb. 2.18	Ermittlung des wirksamen Startvolumens zur Berechnung der Verdich-	
	tung nach [Koehler u. a., 2011]	20
Abb. 2.19	Übersicht verschiedener Möglichkeiten der Abgasrückführung	20
Abb. 2.20	Einsatzmöglichkeiten von Abgasrückführung im Motorkennfeld $\ .$.	21
Abb. 2.21	Massebezogene Verdünnungsrate als Funktion von Luft-Kraftstoff-Ver-	
	hältnis und AGR-Rate	23
Abb. 2.22	Einfluss des späten Einlassschließens auf Druck- und Temperaturverlauf	
	im idealen Gleichraumprozess	25
Abb. 3.1	Zusammenspiel der zur Verfügung stehenden Versuchsträger und Aus-	
	wertewerkzeuge	28

Abb. 3.2	Ausgewählter Kennfeldbereich für die Untersuchungen am Einzylinder- motor	39
Abb. 3.3	Vergleich der Gasdynamik im Abgastrakt für Voll- und Einzylindermotor zur Definition des Gegendruck-Sollwertes	34
Abb. 3.4	Vergleich von Saugrohr und Abgasgegendruck für Voll- und Einzylinder- motor für eine Variation der Last bei $n = 2000 \text{ min}^{-1} \dots \dots \dots$	34
Abb. 3.5	Vergleich von Schwerpunktlage und Klopfindex sowie indiziertem Mit- teldruck in der Ladungswechselschleife für Voll- und Einzylindermotor	
	bei einer Variation der Last bei n = 2000 min^{-1}	35
Abb. 3.6	Auswertung der Messergebnisse	37
Abb. 3.7	Systemschaubild der Zyklussimulation am Beispiel eines konventionellen	
	Antriebsstranges nach [Trzebiatowski u. a., 2010]	41
Abb. 4.1	Genutzter Kennfeldbereich und zeitlicher bzw. Kraftstoffmassen-bezoge-	
	ner Anteil der Betriebspunkte für den NEFZ	44
Abb. 4.2	Genutzter Kennfeldbereich und zeitlicher bzw. Kraftstoffmassen-bezoge-	
	ner Anteil der Betriebspunkte für den WLTC	45
Abb. 4.3	Genutzter Kennfeldbereich für alle betrachteten Fahrzyklen	46
Abb. 4.4	Vergleich von Messung am Rollenprüfstand und Zyklussimulation im NEFZ	47
Abb. 4.5	Vergleich der Messungen von realen Fahrten und individualisierter Zy-	
	klussimulation in der FKFS-Runde	48
Abb. 4.6	Innermotorische Verlustteilung der Vollmotormessung (MAHLE _{VM}) im NEFZ und WLTC	49
Abb. 4.7	Innermotorische Verlustteilung der Vollmotormessung (MAHLE _{VM}) im	
	NEFZ und FKFS-Zyklus	50
Abb. 4.8	Innermotorische Verlustteilung der Vollmotormessung (MAHLE _{VM}) mit optimierter Leerlaufapplikation und Leerlauf nach [Heikes und Trzebia-	
Abb. 4.9	towski, 2012] im NEFZ	51
	nach [Kuberczyk u. a., 2007] im NEFZ	53
Abb. 4.10	Innermotorische Verlustteilung für gemessenes Vollmotor- (MAHLE $_{\rm VM}$)	
	und Einzylinderkennfeld (MAHLE $_{\rm EM})$ im NEFZ $\hfill {\rm NEFZ}$	54
Abb. 5.1	Verlauf der Einlass- und Auslassventilmassenströme für zwei verschiede-	
	ne Ventilsteuerzeiten bei n $=2000{\rm min^{\text{-}1}}$ und $p_{\rm mi}=3{\rm bar}$	57
Abb. 5.2	Einfluss der internen Abgasrückführung auf Wirkungsgrad und Saug-	
	rohrdruck bei $n=2000{\rm min}^{-1}$ und $p_{\rm mi}=3{\rm bar},6{\rm bar}$ sowie $9{\rm bar}$	57
Abb. 5.3	Einfluss der internen Abgasrückführung auf Zündverzug, Brenndauer	
	und Stabilität bei n = 2000 min ⁻¹ und $p_{mi} = 3 bar$, 6 bar sowie 9 bar	58
Abb. 5.4	Einfluss der externen Abgasrückführung auf Wirkungsgrad und Saug-	
	rohrdruck bei $n=2000{\rm min}^{-1}$ und $p_{\rm mi}=3{\rm bar}$ so wie 6 bar $~$	59
Abb. 5.5	Einfluss der externen Abgasrückführung auf Zündverzug, Brenndauer	
	und Stabilität bei $n=2000{\rm min^{-1}}$ und $p_{\rm mi}=3{\rm bar}$ so wie $6{\rm bar}$ $~$	60

Abb. 5.6	Einfluss der externen Abgasrückführung auf Zündverzug, Brenndauer und Stabilität bei $n = 2000 \text{ min}^{-1}$ und $p_{mi} = 3 \text{ bar bei verschiedenen}$	
	Verdichtungsverhältnissen	61
Abb. 5.7	Vergleich von Wirkungsgrad und Saugrohrdruck bei interner und exter-	
	ner AGR bei $n=2000{\rm min^{-1}}$ und $p_{\rm mi}=3{\rm bar}$ so wie 6 bar $~$	61
Abb. 5.8	Einfluss von interner und externer Abgasrückführung auf die Verlusttei-	
	lung bei $n=2000{\rm min}^{-1}$ und $p_{mi}=3{\rm bar}$ so wie 6 bar \hdots	62
Abb. 5.9	Ablauf der Einspritzstrategie mit Doppeleinspritzung zur Verbrennungs-	
	stabilisierung	63
Abb. 5.10	Ermittlung der minimalen Injektoransteuerdauer mittels HC-Methode	64
Abb. 5.11	Ermittlung des optimalen Abstandes von 2. Einspritzung und Zündzeit-	64
Abb 5.19	Finfluss der Inielterensteuerdeuer der 2. Finspritzung auf Zündverzug	04
ADD: 0.12	Eminuss der injektoransteuerdauer der 2. Emispritzung auf Zundverzug,	65
Abb 5 19	Versleich von Zündverzug Pronndeuer und Stabilität mit und ehne	05
ADD: 0.15	Dependence wir zundverzug, Brenndauer und Stabintat mit und onne	
	Doppetentspiritzung über dem Kestgasgenatt ber $n = 2000 \text{ min}$ und n = -2 hon covirs 6 hon	66
ALL 514	$p_{mi} = 5$ bar sowie 0 bar	00
ADD. 0.14	b D the set of the set	00
A11 F 1F	dem Restgasgenalt bei n = 2000 min $^{\circ}$ und p _{mi} = 3 bar sowie 6 bar	00
Abb. 5.15	Nutzbares Zundfenster mit und ohne Einsatz einer Doppeleinspritzung	0.7
111 510	bei $n = 1500 \text{ min}^{-1}$ und $p_{mi} = 3 \text{ bar}$	67
Abb. 5.16	Einfluss des Luft-Kraftstoff-Verhaltnisses auf Wirkungsgrad, spezifische	
	NO_x -Emissionen und Saugrohrdruck bei $n = 2000 \text{ min}^{-1}$ und $p_{mi} = 3 \text{ bar}$	00
	Sowie 6 bar	68
Abb. 5.17	Einfluss der Last auf die durch Abmagerung erzielbare relative Wir-	
A11 F 10	kungsgradverbesserung bei $n = 2000 \text{ min}^{-1} \dots \dots \dots \dots$	69
Abb. 5.18	Einfluss des Luft-Kraftstoff-Verhaltnisses auf Zundverzug, Brenndauer	
411 5 10	und Stabilität bei $n = 2000 \text{ min}^{-1}$ und $p_{mi} = 3$ bar sowie 6 bar	69
Abb. 5.19	Einfluss des Luft-Kraftstoff-Verhaltnisses auf Restgasgehalt und Abgas-	-
	temperatur bei n = 2000 min^{-1} und p _{mi} = 3 bar sowie 6 bar	70
Abb. 5.20	Einfluss des Luft-Kraftstoff-Verhaltnisses auf die thermodynamischen	-
	Verluste bei $n = 2000 \text{ min}^{-1}$ und $p_{mi} = 3 \text{ bar sowie } 6 \text{ bar}$	70
Abb. 5.21	Ermittlung des optimalen Abstands von 2. Einspritzung und Zündzeit-	
	punkt im Magerbetrieb	71
Abb. 5.22	Vergleich von Zündverzug, Brenndauer und Stabilität mit und ohne Dop-	
	peleinspritzung über dem Luft-Kraftstoff-Verhältnis bei $n = 1500 \text{ min}^{-1}$	
	sowie 2000 min ⁻¹ und $p_{mi} = 3 \text{ bar}$	72
Abb. 5.23	Vergleich von HC-, CO- und NO _x -Emissionen mit und ohne Doppelein-	
	spritzung über dem Luft-Kraftstoff-Verhältnis bei n = 1500 min^{-1} sowie	
	$2000 \min^{-1} \text{ und } p_{mi} = 3 \text{ bar} \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots$	73
Abb. 5.24	Vergleich des Wirkungsgrades mit und ohne Doppeleinspritzung über	
	dem Luft-Kraftstoff-Verhältnis bei n = $1500 \min^{-1}$ sowie 2000 min ⁻¹ und	
	$p_{mi} = 3 bar$	73

Abb. 5.25	Nutzbares Zündfenster mit und ohne Einsatz einer Doppeleinspritzung bei $n = 1500 \text{ min}^{-1}$ und $n_{mi} = 3 \text{ bar}$	74
Abb. 5.26	Vergleich des Einflusses von homogener Abmagerung und externer Ab- gasrückführung auf Zündverzug, Brenndauer und Stabilität über der	11
	Verdünnungsrate bei $n = 2000 \text{ min}^{-1}$ und $p_{mi} = 3 \text{ bar sowie } 6 \text{ bar}$.	75
Abb. 5.27	Vergleich des Einflusses von homogener Abmagerung und externer Ab-	
	gasrückführung auf Wirkungsgrad, spezifische Stickoxid-Emissionen und	
	Krümmertemperatur über der Verdünnungsrate bei $n=2000{\rm min^{-1}}$ und	
	$p_{mi}=3\text{bar sowie}\;6\text{bar}\ldots$	75
Abb. 5.28	Verlauf der Einlass- und Auslassventilmassenströme für zwei verschiede-	
	ne Ventilöffnungsdauern bei $n=2000{\rm min^{-1}}$ und $p_{\rm mi}=3{\rm bar}$ $~$	77
Abb. 5.29	Einfluss des späten Einlassschließens auf die Ladungswechselschleife im	
	saugmotorischen Betrieb bei $n=2000{\rm min}^{-1}$ und $p_{mi}=6{\rm bar}$	77
Abb. 5.30	Einfluss der Einlassventilsteuerzeit mit und ohne SES auf Wirkungsgrad	
	und Saugrohrdruck bei $n=2000{\rm min^{-1}}$ und $p_{mi}=3{\rm bar}$	78
Abb. 5.31	Einfluss der Einlassventilsteuerzeit mit und ohne SES auf internen Rest-	
	gasgehalt und indizierten Mitteldruck in der Niederdruckschleife bei	
	$n = 2000 \min^{-1} und p_{mi} = 3 bar$	79
Abb. 5.32	Einfluss der Einlassventilsteuerzeit mit und ohne SES auf Zündverzug,	
	Brenndauer und Stabilität bei n $=2000{\rm min^{\text{-}1}}$ und $p_{\rm mi}=3{\rm bar}$	79
Abb. 5.33	Darstellbare Abgasrückführraten im NEFZ-relevanten Kennfeldbereich	80
Abb. 5.34	Innermotorische Verlustteilung der Einzylindermessungen (MAHLE $_{\rm EM}$	
	1,21) mit thermodynamischer Verdichtung 9,6 mit und ohne externe	0.1
411 5.05	AGR IM NEFZ	81
Abb. 5.35	Darstellbares Luft-Kraftstoff-Verhaltnis im NEFZ-relevanten Kennfeld-	00
Abb 5.26	bereich	82
ADD: 5.50	1.21) mit thermodynamicsher Verdichtung 0.6 mit stöchiometrischem	
	1,21) mit thermodynamischer verdichtung 9,0 mit stochometrischem	83
Abb 5.37	Innermotorische Verluctteilung der Einzvlindermessungen (MAHIErst	00
ADD: 0.01	1.21) mit thermodynamischer Verdichtung 11.0 mit und ohne 40 °KW	
	spätem Einlassschließen im NEFZ	84
Abb. 6.1	Thermodynamisches Verdichtungsverhältnis sowie idealer Gleichraum-	
	wirkungsgrad für die untersuchten Verdichtungsverhältnisse	85
Abb. 6.2	Einfluss des Verdichtungsverhältnisses auf Schwerpunktlage und Wir-	
	kungsgrad für eine Variation der Last bei $n = 2000 \min^{-1} \dots \dots$	86
Abb. 6.3	Einfluss des Verdichtungsverhältnisses auf die Verlustteilung für eine	
111 0.4	Variation der Last bei $n = 2000 \text{ min}^{-1} \dots \dots \dots \dots$	87
Abb. 6.4	Einfluss des Verdichtungsverhältnisses auf Zündverzug, Brenndauer und	00
A11 C F	Stabilitat fur eine Variation der Last bei $n = 2000 \text{ mm}^{-1}$	89
ADD. 0.5	Klopindex der Einzelzyklen über dem Schwerpunkt des Heizverlaufs für	
	verschiedene verdichtungen der $n = 2000 \text{ min}^2$ und $p_{mi} = 18 \text{ bar}, 24 \text{ bar}$	00
	SOWIE 50 Dar	89

Abb. 6.6	Innermotorische Verlustteilung der Einzylindermessungen (MAHLE _{EM} $1,21$) mit thermodynamischer Verdichtung 9.0 und 11.0 im NEFZ.	90
Abb. 6.7	Benötigte Kraftstoffenergie der Einzylindermessungen (MAHLE $_{\rm EM}$ 1,21)	
	im NEFZ und WLTC	91
Abb. 6.8	Einfluss der Dichte zum Zündzeitpunkt und des Elektrodenabstands auf	
	den Zündspannungsbedarf für verschiedene Verdichtungsverhältnisse	92
Abb. 6.9	Einfluss des Elektroden abstands auf die Restgasverträglichkeit $\ .$.	93
Abb. 6.10	Einfluss des späten Einlassschließens auf Schwerpunkt und Wirkungs-	
	grad für eine Variation der Last bei n = $2000 \min^{-1}$	94
Abb. 6.11	Einfluss des späten Einlassschließens auf die Energiebilanz für eine Va-	
	riation der Last bei n = 2000 min ⁻¹ $\dots \dots \dots \dots \dots \dots \dots \dots$	95
Abb. 6.12	Einfluss der Abgasentnahmestelle auf die gemessenen Emissionen für	
	eine Variation der Last bei $\mathbf{n}=2000\mathrm{min}^{\text{-}1}$ bei spätem Einlassschließen	96
Abb. 6.13	Zeitliche Korrektur der gemessenen Emissionen unverbrannter Kohlen-	
	wasserstoffe im Abgastrakt bei $n=2000{\rm min^{-1}}$ und $p_{\rm mi}=21{\rm bar}$	98
Abb. 6.14	Verlauf der HC-Emissionen im Auslasskrümmer im Ladungswechsel mit	
	und ohne SES bei $n = 2000 \text{ min}^{-1}$ und $p_{mi} = 21 \text{ bar sowie } p_{mi} = 30 \text{ bar}$	
		99
Abb. 6.15	Vergleich der durchgespülten Kraftstoffmasse aus Messung mit FFID	
	und Berechnung aus Ladungswechselanalyse sowie 1d-Strömungssimula-	
	tion bei einer Variation der Last bei $n = 2000 \text{ min}^{-1} \dots \dots$	100
Abb. 6.16	Verlauf der HC-Emissionen in Einlass- und Auslasskrümmer im La-	
	dungswechseltakt ohne SES für eine Variation der Einlasssteuerzeit bei	
	$n = 2000 \min^{-1} und p_{mi} = 15 bar$	101
Abb. 6.17	Verlauf der HC-Emissionen in Einlass- und Auslasskrümmer im La-	
	dungswechseltakt mit SES für eine Variation der Einlasssteuerzeit bei	
	$n = 2000 \text{ min}^{-1}$ und $p_{mi} = 15 \text{ bar}$	102
Abb. 6.18	Verlauf der HC-Emissionen im Auslasskrümmer im Ladungswechseltakt	
	an zwei verschiedenen Messstellen bei $n = 2000 \text{ min}^{-1}$ und $p_{mi} = 15 \text{ bar}$	
	sowie $p_{mi} \equiv 30 \text{ bar}$	103
Abb. 6.19	Fanggrad und durchgespülte Kraftstoffmasse mit und ohne SES für eine	
	Variation der Einlasssteuerzeit bei $n = 2000 \text{ min}^{-1}$ und $p_{mi} = 21 \text{ bar}$	103
Abb. 6.20	Einfluss des späten Einlassschließens auf die Energiebilanz sowie die ge-	
11001 0120	spülte Kraftstoffmasse für eine Variation der Last bei $n = 2000 \text{ min}^{-1}$	
	-F	104
Abb 6 21	Einfluss des snäten Einlassschließens auf die Verlustteilung für eine Va-	101
1100. 0.21	riation der Last bei $n = 2000 \text{ min}^{-1}$	105
Abb 6.22	Einfluss des snäten Einlassschließens auf Wirkungsgrad und Schwer-	100
1100. 0.22	punkt für eine Variation der Einlassventilsteuerzeit hei $n = 2000 \text{ min}^{-1}$	
	painte fai chie variation del Ennassvenensederzere bei n = 2000 mm und $\mathbf{p} \cdot = 21$ bar	106
Abb 6.23	Einfluss des späten Einlassschließens auf Fanggrad. Saugrobrdruck und	100
1155. 0.20	Luft-Kraftstoff-Verhältnis im Brennraum für eine Variation der Finlass	
	vantiletauarzait bai $n = 2000 \text{ min}^{-1} \text{ und } n = -21 \text{ bar}$	107
	ventursted et zeit bei $n = 2000 \text{ mm}$ und $p_{mi} = 21 \text{ bar}$	101

Abb. 6.24	Vergleich verschiedener Verdichtungsverhältnisse für eine Variation der	
	Einlassventilsteuerzeit bei $n = 2000 \text{ min}^{-1}$ und $p_{mi} = 21 \text{ bar}$	107
Abb. 6.25	Vergleich der frühen und späten Einlasssteuerzeit ohne SES im Druck-	
	Volumen-Diagramm bei $n = 2000 \text{ min}^{-1}$ und $p_{mi} = 21 \text{ bar}$	108
Abb. 6.26	Einfluss des späten Einlassschließens auf Zündverzug, Brenndauer und	
	Stabilität für eine Variation der Last bei n = $2000 \mathrm{min}^{-1}$	109
Abb. 6.27	Einfluss des späten Einlassschließens auf den zyklusindividuellen Klopf-	
	index bei $n = 2000 \min^{-1}$ und $p_{mi} = 15$ sowie 21 bar $\ldots \ldots \ldots$	110
Abb. 6.28	Einfluss der externen AGR auf Wirkungsgrad, Schwerpunktlage und	
	Saugrohrdruck bei n $=~2000{\rm min^{-1}}$ und $p_{\rm mi}=15$ so wie $21{\rm bar}$ mit ei-	
	ner Entnahme vor und nach Katalysator	111
Abb. 6.29	Einfluss der externen AGR auf die Verlustteilung bei ${\rm n}=2000{\rm min^{-1}}$ und	
	$\mathrm{p_{mi}}=15$ so wie 21 bar mit einer Entnahme vor und nach Katalysator	113
Abb. 6.30	Einfluss der externen AGR auf Zündverzug, Brenndauer und Stabilität	
	bei n = 2000 min ⁻¹ und $p_{mi} = 15$ sowie 21 bar mit einer Entnahme vor	
	und nach Katalysator	114
Abb. 6.31	Vergleich von Zündverzug, Brenndauer und Stabilität über der Schwer-	
	punktlage bei $n = 2000 \min^{-1}$ und $p_{mi} = 21 bar$	114
Abb. 6.32	Zyklusindividueller Klopfindex über dem Schwerpunkt des Heizverlaufs	
	bei $n = 2000 \text{ min}^{-1}$ und $p_{mi} = 15 \text{ bar sowie } 21 \text{ bar}$	115
Abb. 6.33	Einfluss der externen AGR auf Wirkungsgrad, Schwerpunktlage und	
	Saugrohrdruck bei $n = 2000 \text{ min}^{-1}$ und $p_{mi} = 21$ bar mit einer Entnahme	
	vor Katalysator bei unterschiedlichem internen Restgasgehalt	116
Abb. 6.34	Einfluss der externen AGR auf Zündverzug, Brenndauer und Stabilität	
	bei n = 2000 min^{-1} und p _{mi} = $21 \text{ bar mit einer Entnahme vor Katalysator}$	
	bei unterschiedlichem internen Restgasgehalt	117
Abb. 6.35	Einfluss der Ansauglufttemperatur auf die Verbrennungsschwerpunktla-	
	ge bei n = 2000 min ⁻¹ und $p_{mi} = 21$ bar mit und ohne Abgasrückführung	117
Abb. 6.36	Einfluss des globalen Luft-Kraftstoff-Verhältnisses auf den Wirkungs-	
	grad bei $n = 2000 \text{ min}^{-1}$ und 21 bar	120
Abb. 6.37	Einfluss des Luft-Kraftstoff-Verhältnisses bei externer AGR auf Wir-	
	kungsgrad. Schwerpunktlage und relatives Turbinendruckverhältnis bei	
	$n = 2000 \text{ min}^{-1}$ und $p_{mi} = 15$ sowie 21 bar mit einer Entnahme vor Ka-	
	talvsator	120
Abb 6.38	Vergleich des Einflusses von externer Abgasrückführung und spätem Ein-	
	lassschließen auf Schwerpunktlage und Wirkungsgrad über dem relativen	
	notwendigen Turbinendruckverhältnis bzw. der relativen notwendigen	
	Verdichterleistung mit Spülung	121
Abb 6.39	Vergleich des Einflusses von externer Abgasrückführung und spätem Ein-	
	lassschließen auf die Schwerpunktlage über der relativen notwendigen	
	Verdichterleistung im Vergleich zu [Schmuck-Soldan u.a. 2012]	122
Abb. 6.40	Einfluss des Luft-Kraftstoff-Verhältnisses auf indizierten Wirkungsgrad	
0.10	Schwerpunkt und Saugrohrdruck bei $n = 2000 \text{ min}^{-1}$ und $n_{mi} = 21 \text{ bar}$	123
	I and plui - I but	

Abb. 6.41	Einfluss des Luft-Kraftstoff-Verhältnisses auf Zündverzug, Brenndauer und Stabilität bei $n = 2000 \text{ min}^{-1}$ und $p_{mi} = 21 \text{ bar}$	124
Abb. 6.42	Zyklusindividueller Klopfindex über dem Schwerpunkt des Heizverlaufs	
	für eine homogene Verdünnung mit Luft bzw. Abgas bei $n = 2000 \text{ min}^{-1}$	10.1
A11 C 40	und $p_{mi} = 21 \text{ bar}$	124
Abb. 6.43	Vergleich des Einflusses von homogener Abmagerung und externer AGR	
	auf Schwerpunktlage, Wirkungsgrad und Turbinendruckverhaltnis über	105
A11 0 44	der Verdunnungsrate bei $n = 2000 \text{ min}^{-1}$ und $p_{mi} = 21 \text{ bar}$	125
Abb. 6.44	Vergleich des Einflusses von homogener Abmagerung und externer AGR	
	auf Zundverzug, Brenndauer und Stabilität über der massebezogenen	100
111 0 15	Verdunnungsrate bei $n = 2000 \text{ min}^{-1}$ und $p_{mi} = 21 \text{ bar}$	126
Abb. 6.45	Simulation der Volllastcharakteristik des Versuchstragers mit optimier-	
	ter Verdichtung und spätem Einlassschließen in Kombination mit mini-	1.00
	maler Hybridisierung	128
Abb. 6.46	Schwerpunktlage, HC-Emissionen und effektiver Wirkungsgrad mit opti-	
	mierter Verdichtung und spätem Einlassschließen für eine Variation der	1.00
	Last be $n = 2000 \text{ mm}^{-1}$	129
Abb. 6.47	Saugrohrdruck, Einlassöffnen und Wastegate-Stellung mit optimierter	
	Verdichtung und spätem Einlassschließen für eine Variation der Last bei	
	$n = 2000 \text{ min}^{-1}$	130
Abb. 6.48	Prinzipieller Ablauf der Einspritzstrategie mit Doppeleinspritzung zur	
4.1.1 0.40	HC-Reduktion im Spülbetrieb	131
Abb. 6.49	Einfluss der Einspritzstrategie auf die Emissionen bei $n = 2000 \text{ min}^4$	100
A11 0 FO	und $p_{me} = 16 \text{ bar}$	132
Abb. 6.50	Einfluss der Einspritzstrategie auf effektiven Wirkungsgrad und Stabili-	100
A11 0 F1	tat bei $n = 2000 \text{ min}^2$ und $p_{me} = 16 \text{ bar}^2$	132
Abb. 6.51	Vergleich der HC-Emissionen im Kennfeldbereich mit Spulbetrieb bei	100
111 0 50	verschiedenen Strategien für Ventilsteuerzeit und Einspritzung	133
Abb. 6.52	Vergleich der effektiven Wirkungsgrade im Kennfeldbereich mit Spulbe-	104
A11 C F9	trieb bei verschiedenen Strategien für Ventilsteuerzeit und Einspritzung	134
ADD. 0.55	Einnuss der Einspritzstrategie auf die HC-Emissionen im transienten	195
A11 0 F4	Betrieb bei 1200 min ²	135
Abb. 6.54	Gemessene Vollastcharakteristik des Versuchstragers mit optimierter	190
A11 C FF	verdichtung und spatem Einiassschließen	130
ADD. 0.00	intermotorische verlustenung der volimotormessung (MAHLEVM 1,21)	
	mit thermodynamischer verdichtung 9,0 und 10,9 sowie 30 KW SES im	196
A11 C.F.C		130
ADD. 0.30	Denotigte Kratistonenergie der vonmotormessung (MARLEVM 1,21) im	190
	NEFZ und WLIC	138
Abb. 7.1	Kennfeldbereich mit Anfettungsbedarf für den Versuchsträger	140
Abb. 7.2	Versuchsaufbau der Hochlast-Abgasrückführung am Vollmotor $\ .$	141
Abb. 7.3	Relevanter Kennfeldbereich für den Einsatz von Hochlast-AGR als Mit-	
	tel zur Anfettungsreduktion	141

Abb. 7.4	Maximal darstellbare externe Abgasrückführrate bei hoher Last $\ .$.	142
Abb. 7.5	Globales Luft-Kraftstoff-Verhältnis mit und ohne externe Abgasrück- führung	142
Abb. 7.6	Temperatur im Abgaskrümmer mit und ohne externe Abgasrückfüh-	
	rung	143
Abb. 7.7	Anderung der Schwerpunktlage und des mittleren Klopfindexes mit Ab- gesrückführung	144
Abb 7.8	Verbrauchseinsparung und Änderung der Turbeladerdrehzahl mit Hoch	111
Abb. 1.0	last-AGR bezogen auf Betrieb mit Anfettung	144
Abb 7.9	Verlustteilung mit und ohne externe Abgasrückführung bei 4500 min ⁻¹	145
Abb. 7.10	Globales Luft-Kraftstoff-Verhältnis für untersuchte maximal zulässige	110
	Turbineneintrittstemperaturen	146
Abb. 7.11	Temperatur im Abgaskrümmer für untersuchte maximal zulässige Turb-	110
	ineneintrittstemperaturen	146
Abb. 7.12	Änderung der Schwerpunktlage und des mittleren Klopfindexes bei er-	
	höhter maximal zulässiger Turbineneintrittstemperatur	147
Abb. 7.13	Temperatur im Abgaskrümmer für untersuchte maximal zulässige Turb-	
	ineneintrittstemperaturen	147
Abb. A1	Verlust durch reale Ladungszusammensetzung als Grenzfall	165
Abb. A2	Verlust durch realen Brennverlauf bzw. reale Brenndauer als Grenzfall	165
Abb. B1	Genutzter Kennfeldbereich und zeitlicher bzw. Kraftstoffmassen-bezoge-	
	ner Anteil der Betriebspunkte für die FKFS-Runde	166
Abb. B2	Vergleich von Messung am Rollenprüfstand und Zyklussimulation im	
	WLTC	166
Abb. B3	Vergleich von Messung von realen Fahrten und Zyklussimulation im	
	FKFS-Zyklus	166
Abb. B4	Innermotorische Verlustteilung für Otto- $(\mathrm{MAHLE}_{\mathrm{VM}})$ und Dieselmotor	
	im NEFZ	167
Abb. B5	Innermotorische Verlustteilung für den Ottomotor (MAHLE $_{\rm VM})$ mit Be-	
	rechnung der Kalorik nach [Grill, 2006] oder [De Jaegher, 1976] und	
	[Zacharias, 1966] im NEFZ	168
Abb. B6	Innermotorische Verlustteilung für MAHLE $_{\rm VM}$ 1,21 und GM L850 2,21	
	nach [Kuberczyk u.a., 2007] im NEFZ mit gleichgestellter Kalorikbe-	
	rechnung	168
Abb. C1	Einfluss der internen AGR auf HC-, CO- sowie NO _x -Emissionen bei	
	$n=2000{\rm min^{\text{-}1}}$ und $p_{\rm mi}=3{\rm bar},6{\rm bar}$ so wie $9{\rm bar}$ \ldots	169
Abb. C2	Einfluss der externen AGR auf HC-, CO- sowie NO _x -Emissionen bei	
	$n = 2000 \min^{-1} und p_{mi} = 3 bar sowie 6 bar \dots \dots \dots$	169
Abb. C3	Einfluss der Injektoransteuerdauer der 2. Einspritzung auf HC-, CO- und	
	NO _x -Emissionen bei Abgasrückführung	169
Abb. C4	Einfluss des Luft-Kraftstoff-Verhältnisses auf HC-, CO- und NO _x -Emis-	
	sionen bei $n = 2000 \text{ min}^{-1}$ und $p_{mi} = 3 \text{ bar sowie } 6 \text{ bar}$	170

Abb. C5	Einfluss der Injektoransteuerdauer der 2. Einspritzung auf Zündverzug, Brenndauer und Stabilität bei Abmagerung	170
Abb. C6	Einfluss der Iniektoransteuerdauer der 2. Einspritzung auf HC- CO- und	170
11001 00	NO _x -Emissionen bei Abmagerung	170
Abb. C7	Einfluss der 2. Einspritzung auf Zylinderdruck, Brennverlauf und Sum-	
	menbrennverlauf bei n = 2000 min^{-1} und p _{mi} = 3 bar und Abmagerung	171
Abb. C8	Einfluss der Verdünnung auf Zylinderdruck, Temperatur im Verbrann-	
	ten und Summenbrennverlauf bei $n = 2000 \text{ min}^{-1}$ und $p_{mi} = 3$ bar und	
	Abgasrückführung	171
Abb. C9	Einfluss der Verdünnung auf Zylinderdruck, Temperatur im Verbrann-	
	ten und Summenbrennverlauf bei $n = 2000 \text{ min}^{-1}$ und $p_{mi} = 3 \text{ bar und}$	
	Abmagerung	171
Abb. C10	Einfluss der Einlassventilsteuerzeit mit und ohne SES auf die innermo-	
	torische Verlustteilung bei n = 2000 min ⁻¹ und $p_{mi} = 3 \text{ bar} \dots$	172
Abb. C11	Einfluss der Einlassventilsteuerzeit mit und ohne SES auf HC-, CO- und	
	$\rm NO_x\text{-}Emissionen$ bei $n=2000\rm min^{-1}$ und $p_{\rm mi}=3\rm bar$	172
Abb. D1	Kolbengeometrien der untersuchten Verdichtungsverhältnisse	173
Abb. D2	Innermotorische Verlustteilung der Einzylindermessungen (MAHLE $_{\rm EM}$	
	1,21) mit thermodynamischer Verdichtung 9,0 und 9,6 im NEFZ $$.	173
Abb. D3	Schematische Darstellung der Position der Entnahmesonden im Einlass-	
	und Auslasskanal	173
Abb. D4	Vergleich der gemessenen Emissionen bei einer Abgasentnahme an der	
	ersten Entnahmestelle für eine Variation der Last bei $n=2000{\rm min}^{-1}$ für	
	die verschiedenen Varianten der zweiten Abgasentnahme $\ \ldots \ldots \ldots$	174
Abb. D5	Einfluss der Abgasentnahmestelle auf die gemessenen Emissionen für	
	eine Variation der Last bei $\mathbf{n}=2000\mathrm{min}^{-1}$ ohne spätes Einlassschließen	174
Abb. D6	Vergleich der durchgespülten Kraftstoffmasse aus der Ladungswechsel-	
	analyse für verschiedene Mischungsfaktoren bei einer Variation der Last	
	bei $n = 2000 \text{ min}^{-1}$	175
Abb. D7	Vergleich der frühen und späten Einlasssteuerzeit mit SES im Druck-	
	Volumen-Diagramm bei $n = 2000 \text{ min}^{-1}$ und $p_{mi} = 21 \text{ bar} \dots$	176
Abb. D8	Temperatur des rückgeführten Abgases sowie Temperatur im Saugrohr	
	und der Umgebung für die Variationen der AGR-Rate bei $n = 2000 \text{ min}^{-1}$	
	und $p_{mi} = 15$ sowie 21 bar mit einer Entnahme vor und nach Katalysa-	
		176
Abb. D9	Einfluss der externen AGR auf Wirkungsgrad, Schwerpunktlage und	
	Saugrohrdruck bei $n = 1500 \text{ mm}^{-1}$ und $p_{mi} = 15$ sowie 21 bar mit ei-	170
A11 D10	her Enthanme vor und nach Katalysator	170
ADD. D10	Energie der gemessenen HC- und CO-Emissionen im Krummer und an	177
Abb D11	Finfluss der avtarnan ACR auf Zündwarzug Branndauer und Stabilität	111
ADD. D11	bai $n = 1500 \text{ min}^{-1}$ und $n_{\pm} = 15$ sowie 21 bar mit einer Entrehme vor	
	$p_{mi} = 1000 \text{ mm}$ and $p_{mi} = 10$ sowie 21 bar mit einer Enthällme vor und nach Katalysator	177
	unu naun MatalySatul	111

Abb. D12	Einfluss des Gegendruckes auf Wirkungsgrad, Schwerpunkt und Rest-	
	gasgehalt bei n $=2000{\rm min^{-1}}$ und $p_{\rm mi}=15{\rm bar}$ mit und ohne Abgas-	
	rückführung	177
Abb. D13	Vergleich des Einflusses von externer AGR und spätem Einlassschließen	
	auf Schwerpunktlage und Wirkungsgrad über dem relativen notwendigen	
	Turbinendruckverhältnis bzw. der relativen notwendigen Verdichterleis-	
	tung ohne Spülung	178
Abb. D14	Einfluss der Schwerpunktlage auf Wirkungsgrad und notwendigen Saug-	
	rohrdruck bei $n=2000{\rm min^{-1}}$ und $p_{\rm mi}=12{\rm bar}$ so wie 21 bar $~$	178
Abb. D15	Innermotorische Verlustteilung der Einzylindermessungen (MAHLE $_{\rm EM}$	
	1,21) mit thermodynamischer Verdichtung 9,0 und 11,0 und 30 $^{\circ}\mathrm{KW}$ SES	
	im NEFZ	178

Tabellenverzeichnis

Tab. 3.1	Kenndaten des verwendeten Vollmotors	29
Tab. 3.2	Kenndaten des verwendeten Fahrzeugs	31
Tab. 4.1	Kenndaten verschiedener Fahrzyklen	43
Tab. B1	Vergleich der Kenndaten der verwendeten Versuchsmotoren nach [Kuberczyk u. a., 2007] und [Schnittger u. a., 2003]	167
Tab. B2	Vergleich der Kenndaten der verwendeten Versuchsfahrzeuge nach [Ku-	
	berczyk u.a., 2007]	167