

Pixelbasierte Datenfusion zur Steigerung der Objekterkennungsleistung im Fahrzeugumfeld

von der Fakultät für Elektrotechnik und Informationstechnik der Technischen Universität Chemnitz

genehmigte

Dissertation

zur Erlangung des akademischen Grades Doktoringenieur (Dr.-Ing.)

vorgelegt von

Dipl.-Ing. (FH) Jan Thomanek

geboren am 7.Oktober 1973 in Mittweida

eingereicht am 21. November 2013

Gutachter: Prof. Dr.-Ing. Gerd Wanielik Prof. Dr. rer. nat. Madhukar Chandra

Tag der Verleihung: 23. Juli 2014

Forschungsberichte der Professur Nachrichtentechnik herausgegeben von Prof. Dr.-Ing. Gerd Wanielik

Band 10

Jan Thomanek

Pixelbasierte Datenfusion zur Steigerung der Objekterkennungsleistung im Fahrzeugumfeld

D 93 (Diss. TU Chemnitz)

Shaker Verlag Aachen 2014

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: Chemnitz, Techn. Univ., Diss., 2014

Copyright Shaker Verlag 2014 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8440-3140-9 ISSN 1610-1251

Shaker Verlag GmbH • Postfach 101818 • 52018 Aachen Telefon: 02407 / 95 96 - 0 • Telefax: 02407 / 95 96 - 9 Internet: www.shaker.de • E-Mail: info@shaker.de Für Linda und Cindy

Vorwort

Diese Arbeit ist das Ergebnis meiner mehrjährigen berufsbegleitenden Forschungstätigkeit an der Professur für Nachrichtentechnik der Technischen Universität Chemnitz.

Mein besonderer Dank gilt deshalb dem Leiter dieser Professur Prof. Dr.-Ing. Gerd Wanielik für seine Unterstützung. Ich danke ihm für das in mich gesetzte Vertrauen, die Herausforderung einer nebenberuflichen Promotion zu bewältigen. Er ließ mir den Freiraum, anspruchsvolle Forschungsaufgaben eigenständig zu bearbeiten und half mir durch seine bereichernden Hinweise und Anregungen wiederholt, mein Augenmerk in neue thematische Bahnen zu lenken.

Herrn Prof. Dr. rer. nat. Madhukar Chandra danke ich sehr für das Interesse an der Thematik und für die Bereitschaft der Übernahme eines Gutachtens. Für die fachliche Betreuung der Arbeit, den damit verbundenen gemeinsamen Diskussionen und der freundlichen, über die Arbeit hinausgehende Zusammenarbeit gilt mein außerordentlicher Dank Dr.-Ing. Basel Fardi.

Bei der IAV GmbH bedanke ich mich für die Möglichkeit, einer über mehrere Jahre dauernden Teilzeitbeschäftigung. Mein besonderer Dank gilt dabei meinem Abteilungsleiter Abdulvahap User und meinem Teamleiter Uwe Lohs, die mir die Freiheit hinsichtlich einer flexiblen Arbeitszeitgestaltung einräumten und damit den Spagat zwischen Beruf und Promotion ermöglichten. Des Weiteren möchte ich mich bei meinem Projektleiter Dr. rer. nat. Hadj Hamma Tadjine für die Mitarbeit an innovativen Themen aus dem Bereich der Fahrerassistenzsysteme, sowie meinem Kollegen Dr.-Ing. Christian Lang für die Durchsicht des Manuskripts bedanken.

Ebenso geht mein Dank an die jetzigen und ehemaligen Mitarbeiter der Professur für Nachrichtentechnik. Deren Unterstützung und die freundschaftliche Zusammenarbeit haben sehr zum Gelingen dieser Arbeit beigetragen.

Mein persönlicher Dank gilt meiner Familie und meinen Eltern für ihre Unterstützung und insbesondere für ihre Geduld und ihr Verständnis für wissenschaftliches Arbeiten an Wochenenden und nach Feierabend.

Kurzfassung

Derzeit erfahren Systeme zur Kombination von Daten unterschiedlicher Sensoren für die Fahrzeugumfelderkennung eine wachsende Bedeutung. Eine solche Fusion kann bei bildgebenden Sensoren bereits auf der Pixelebene erfolgen. Ein fusioniertes Bild bietet aufgrund des höheren Informationsgehaltes entscheidende Vorteile für die weiterführende Bildverarbeitung, wie z.B. bei der Objekterkennung und der Objektklassifikation.

Gegenstand der Arbeit ist die Entwicklung eines geeigneten Fusionsschemas, welches die Daten zweier oder mehrerer bildgebender Sensoren auf Pixelebene zu einem gemeinsamen Mischbild kombiniert. Das Fusionsverfahren wird dabei so gewählt, dass das fusionierte Bild eine optimale Basis für die Merkmalsgewinnung eines mobilen Objekterkennungssystems darstellt und damit dessen Detektionsleistung steigert. Die praktische Anwendung und Validierung der entwickelten Fusionstechniken erfolgt anhand der Implementierung eines auf der Fusion einer Infrarot- und einer Farbkamera basierenden Fußgängererkennungssystems.

Das vorgestellte Fusionsframework überführt zunächst die Eingangsbilder mittels Wavelet-Transformation in eine Multiskalendarstellung, die es erlaubt, Bildmerkmale zu klassifizieren und damit das Gewicht bestimmter Strukturen in Abhängigkeit deren Relevanz für die Fusion zu verstärken oder abzuschwächen. Die Fusion der Daten erfolgt im transformierten Raum und fundiert auf einem wahrscheinlichkeitstheoretischen Ansatz, der die Entstehung unvollständiger und mit Rauschen behafteter Sensorbilder als Abbild einer realen Szene modelliert. Anhand verschiedener Experimente wird gezeigt, dass die pixelbasierte Datenfusion die Detektionsleistung eines Fußgängererkennungssystems gegenüber Einzelsensorlösungen und den bekannten Fusionsmethoden auf höheren Abstraktionsebenen steigert.

Inhaltsverzeichnis

N	Nomenklatur ix			
A	Abkürzungsverzeichnis xix			
1	Einl	eitung		1
	1.1	Zielse	tzung und Beitrag der Arbeit	4
	1.2	Inhalt	und Gliederung der Arbeit	7
2	Mul	tisenso	orbasierte Szenenerfassung	9
	2.1	Umfel	derkennung im Automobil	9
		2.1.1	Systeme und Sensorik zur lokalen Umgebungserfassung $\ .\ .$	10
		2.1.2	Sensordatenfusion	15
		2.1.3	Fusion bildgebender Sensoren	20
	2.2	Masch	ninelles Sehen	23
		2.2.1	Bildsensor und Bildrepräsentation	23
		2.2.2	Kameramodell und Kalibrierung	25
		2.2.3	Stereoskopie	32
	2.3	Pixell	Dasierte Datenfusion	38
		2.3.1	Gegenstand der Bildfusion	38
		2.3.2	Bildregistrierung	40
		2.3.3	Methoden pixelbasierter Datenfusion	42
		2.3.4	Fusion basierend auf Multiskalenzerlegung	44
	2.4	Fußgä	ngererkennungssysteme	54
		2.4.1	Fußgängerschutz	54
		2.4.2	Systemanforderungen und Systemarchitektur	55
		2.4.3	Beschreibung des Funktionsprinzips	56
		2.4.4	Multisensorbasierte Fußgängererkennung	63
3	Pixe	elbasier	rte Datenfusion in der Objekterkennung	67
	3.1	Ein Fi	ramework zur Fusion bildgebender Sensoren auf Bildpunkteben	e 68
		3.1.1	Anforderungen	69

		3.1.2	Das Fusionsschema	70
	3.2	Rektif	ikation der Sensorbilder als Form der Bild-Registrierung	72
		3.2.1	Epipolargeometrie und Fundamentalmatrix	74
		3.2.2	Schätzung der Rektifikationstransformationen	76
	3.3	Multis	kalenrepräsentation der Sensorbilder	80
		3.3.1	Zerlegung der Bilder mittels verschiebungsinvarianter Wavelet-	
			Transformation	81
		3.3.2	Rauschunterdrückung	90
		3.3.3	Multiskalenkantendetektion	96
	3.4	Ein m	odellbasierter Ansatz zur Bildfusion	101
		3.4.1	Das Bildentstehungsmodell	102
		3.4.2	Fusion mittels Bayes-Schätzer	103
		3.4.3	Schätzung der Modellparameter	105
		3.4.4	Konsistenzprüfung und Zusammenfassung	109
4	Imp	lement	ierung einer multisensorgestützten Fußgängererkennung	113
	4.1	Systen	nuberblick	114
		4.1.1	Funktionale Anforderungen	114
	4.0	4.1.2	Systemarchitektur	115
	4.2	Pixelb	asierte Fusion einer Infrarotkamera und einer Videokamera .	120
		4.2.1	Rektifikation der Kamerabilder	120
	4.0	4.2.2	Fusion der Kamerabilder	124
	4.3	Formb	asierte Fubgangererkennung	132
		4.3.1	Hypothesengenerierung	132
		4.3.2	Merkmalsextraktion	134
		4.3.3	Definition des Trainings- und Evaluierungsdatensatzes	137
		4.3.4	Fußgangerklassifikation	141
	4.4	Filteri	ing und Tracking	148
		4.4.1	Aufbau des Tracking-Moduls	149
		4.4.2	Zustandsschatzung mittels Kalman-Filter	152
5	Exp	eriment	te und Evaluierung	159
	5.1	Bewer	tungskriterien	159
		5.1.1	Informationsgewinn der extrahierten Merkmale	160
		5.1.2	Testdatensatz und Kreuzvalidierung	161
		5.1.3	Fehlerrate, Konfusionsmatrix und ROC-Kurve	162
	5.2	Betrac	chtung des Informationsgewinns durch die pixelbasierte Daten-	
		fusion		163
		5.2.1	Inhalt des Experiments	164
		5.2.2	Ergebnisse und Diskussion	165
	5.3	Vergle	ich mit High-Level-Fusionsmethoden	169
	-	5.3.1	Inhalt des Experiments	170
			*	

		5.3.2	Ergebnisse und Diskussion	173
6	Zusa 6.1 6.2	Erbrac Offene	fassung und Ausblick hter wissenschaftlicher Beitrag	181 183 185
Α	Anh A.1 A.2 A.3 A.4	ang Antisy Schätz Signale Vektor	mmetrische Matrizen	187 187 188 190 191
Lit	eratı	ırverzei	ichnis	193
Ab	bildu	ngsver	zeichnis	207
Та	belle	nverzei	chnis	209
Le	bensl	auf		211

Nomenklatur

Im Folgenden sind die in dieser Arbeit verwendeten mathematischen Symbole und deren Bedeutung aufgelistet. Sie sind entsprechend ihrer inhaltlichen Zuordnung gruppiert. Innerhalb einer Gruppe sind die Bezeichnungen und Symbole i. A. eindeutig. Es kann jedoch vorkommen, dass ein Ausdruck eine andere Bedeutung hat, dann ist dies jedoch klar aus dem Zusammenhang ersichtlich. Als Dezimalzeichen wird der Punkt verwendet.

Allgemeine Notation und Schreibweise

\mathbb{N}	Menge der natürlichen Zahlen
\mathbb{R}	Menge der reellen Zahlen
\mathbb{Z}	Menge der ganzen Zahlen
\mathbb{P}	Menge der Bild- bzw. Pixelwerte
8	Skalar – klein und kursiv
v	Vektor – klein und fett
М	$Matrix - \operatorname{groß} und fett$
Х	3D-Punkt – groß und fett
х	2D-Punkt – klein und fett
$\tilde{\mathbf{x}}, \tilde{\mathbf{X}}$	2D-Punkt bzw. 3D-Punkt in homogenen Koordinaten
$\mathcal{E}\{\cdot\}$	Erwartungswert einer Zufallsgröße
$\mathcal{N}(\mathbf{x}, \mathbf{C})$	Multivariate Normal verteilung mit Erwartungswert ${\bf x}$ und
	Kovarianzmatrix \mathbf{C}
$\exp{\{\cdot\}}$	Exponentialfunktion
$\langle f,g \rangle$	Internes bzw. Skalarprodukt
p(A)	Wahrscheinlichkeit des Ereignisses A
p(A B)	Bedingte Wahrscheinlichkeit des Ereignisses A , wenn das
· · · /	Eintreten des Ereignisses B bekannt ist

(x, y)	Position in der Bildebene in Form horizontaler x und verti-
	kaler Pixelkoordinaten y
(u, v)	Position in der Wavelet-Domäne in Form horizontaler u und
	vertikaler Koeffizientenkoordinaten v

Projektive Geometrie, Stereoskopie und Rektifikation

(Abschnitte 2.2, 3.2 und 4.2.1)

B	Basislinie – Abstand der Projektionszentren zweier Kameras
	in einem Stereosystem
с	Kamerahauptpunkt
С	Ursprung des Kamerakoordinatensystems
d_x	Skalierungsfaktor zur Umrechnung der Disparität von Pixel
	in mm
D	Matrix der euklidischen 3D-Transformation
e	Epipol
\mathbf{E}	Essential-Matrix
f	Brennweite einer Kamera
f_x, f_y	Horizontale und vertikale Kamerakonstante
f	Vektor der Elemente der Fundamentalmatrix \mathbf{F} mit \mathbf{f} =
	$(f_{11}, f_{12}, \ldots, f_{33})^T$
F	Fundamentalmatrix
н	Homographiematrix mit den Spaltenvektor $\mathbf{H} = \begin{bmatrix} \mathbf{h}_1 & \mathbf{h}_2 & \mathbf{h}_3 \end{bmatrix}$
H_1, H_2	Rektifikationsterme zweier Kameras in Form von Homogra-
	phiematrizen zur Transformation eines Bildpunktes von der
	originalen Bildebene in die rektifizierte Ebene
I	Einheitsmatrix
J	Jacobi-Matrix
k_x, k_y	Horizontaler und vertikaler Skalierungsfaktor zur Umrech-
U	nung in diskrete Pixelkoordinaten
K	Intrinsische Kameramatrix
\mathbf{K}'	Interne Transformationsmatrix
$\mathbf{K}_{o1}, \mathbf{K}_{o2}$	Original-Kameramatrizen im Rektifikationsprozess
$\mathbf{K}_{r1}, \mathbf{K}_{r2}$	Kameramatrizen der virtuellen rektifizierten Kameras im
	Rektifikationsprozess
1	Epipolarlinie
0	Ursprung des Weltkoordinatensystems
р	Parametervektor zur Schätzung der Rektifikations-
	terme mittels Optimierungsalgorithmus mit \mathbf{p} =
	$(\Phi_1,\Psi_1,\Phi_2,\Theta_2,\Psi_2,f_1,f_2)^T$
Р	Projektionsmatrix

Perspektivische Projektionsmatrix
Projektionsmatrizen für Projektion eines Weltpunktes in die
originale Bildebene bzw. in die rektifizierte Ebene
Projektiver Raum der Dimension n
Rotationsmatrix mit den Spaltenvektor $\mathbf{R} = \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{r}_3 \end{bmatrix}$
Skalierungsfaktor
Translationsvektor
Positionsvektor des Epipols im achsparallelen Stereosystem
horizontaler Ausrichtung mit $\tilde{\mathbf{u}}_1 = (1, 0, 0)^T$
Positionsvektor des Epipols im achsparallelen Stereosystem
vertikaler Ausrichtung mit $\tilde{\mathbf{u}}_2 = (0, 1, 0)^T$
Horizontale und vertikale Komponente des Kamerahaupt-
punktes c
Bildpunkt in Pixelkoordinaten mit $\mathbf{x} = (x, y)^T$
Bildpunkt in homogenen Pixelkoordinaten $\tilde{\mathbf{x}} = (x, y, 1)^T$
Gemessener Bildpunkt in Pixelkoordinaten als Projektion
eines Weltpunktes
Bildpunkt in der originalen Bildebene
Bildpunkt in der rektifizierten Bildebene
2D-Punkt im Sensorkoordinatensystem mit den Koordinaten
$\mathbf{x}' = (x', y')^T$
2D-Punkt im Sensorkoordinatensystem in homogenen Koor-
dinaten $\tilde{\mathbf{x}}' = (x', y', 1)^T$
Durch die Linsenverzeichnung verzerrter 2D-Punkt im Sen-
sorkoordinatensystem mit $\mathbf{x}'_d = (x'_d, y'_d)^T$
Ideales Bildpunktpaar, welches die Epipolarbedingung exakt
erfüllt
Vektor der Punktekorrespondenzen im Rektifikationsprozess
mit $\mathbf{X} = (x_1, y_1, x_2, y_2)^T$
Vektor der idealen Punktekorrespondenzen im Rektifikati-
onsprozess mit $\mathbf{X}^* = (x_1^*, y_1^*, x_2^*, y_2^*)^T$
3D-Punkt im Weltkoordinatensystem mit den Koordinaten
$\mathbf{X}_W = (X_W, Y_W, Z_W)^T$
3D-Punkt im Weltkoordinatensystem in homogenen Koordi-
naten $\tilde{\mathbf{X}}_W = (X_W, Y_W, Z_W, 1)^T$
3D-Punkt im Kamerakoordinatensystem mit den Koordina-
ten $\mathbf{X}_C = (X_C, Y_C, Z_C)^T$
3D-Punkt im Kamerakoordinatensystem in homogenen Ko-
ordinaten $\mathbf{\tilde{X}}_C = (X_C, Y_C, Z_C, 1)^T$

Δ	Disparität – Versatz zwischen den beiden Abbildungen \mathbf{x}_1
	und \mathbf{x}_2 eines Weltpunktes \mathbf{X}_W
δ_{X}	Differenz der idealen und gemessenen Vektoren der Punkte-
	korrespondenzen im Rektifikationsprozess
ϵ	Fehler der Epipolargleichung bei Anwendung der gemessenen
	Punktekorrespondenzen
Θ	Winkel der Rotation um die Y-Achse zur Überführung der
	Originalbildebene in die rektifizierte Ebene
κ_i	Radiale und tangentiale Verzerrungskoeffizienten mit $i =$
	1, 2, 3, 4, 5
π	Ebene im Raum
ρ	Abstand eines Weltpunktes \mathbf{X}_W von der Kamera
Φ	Winkel der Rotation um die X-Achse zur Überführung der
	Originalbildebene in die rektifizierte Ebene
Ψ	Winkel der Rotation um die Z-Achse zur Überführung der
	Originalbildebene in die rektifizierte Ebene
ω	Bild des absoluten Konic
Ω_{∞}	Absoluter Konic

Pixelbasierte Datenfusion, Multiskalenzerlegung und Wavelet-Transformation

(Abschnitte 2.3, 3.3, 3.4 und 4.2.2)

$a_i^p(u,v)$	Activity Level im Subband p der Skala j an Position (u, v)
$\dot{A}(u,v)$	Kantenorientierungsbild
$A_d(u, v)$	Diskretes Kantenorientierungsbild
$c_j(k)$	Approximationskoeffizient der Skala j an Position k
$c_j(u,v)$	Approximationskoeffizient im zweidimensionalen Fall der
	Skala j an Position (u, v)
$c_i^x(u,v)$	Approximationskoeffizient des horizontalen Subbandes der
5	Skala j an Position (u, v)
$c_i^y(u,v)$	Approximationskoeffizient des vertikalen Subbandes der Ska-
0	la j an Position (u, v)
C(y)	Zu minimierende Kostenfunktion im Rahmen der MAP-
	Schätzung
C_x	Kovarianzmatrix der Wavelet-Repräsentationen ${\bf x}$ gemäß
	dem Bildentstehungsmodell
$d_j(k)$	Detailkoeffizient der Skala j an Position k
$d_j(u,v)$	Detailkoeffizient im zweidimensionalen Fall der Skala \boldsymbol{j} an
	Position (u, v)
$d_i^x(u,v)$	Detailkoeffizient des horizontalen Subbandes der Skala \boldsymbol{j} an
e i i i i i i i i i i i i i i i i i i i	Position (u, v)

$d_j^y(u,v)$	Detailkoeffizient des vertikalen Subbandes der Skala \boldsymbol{j} an
	Position (u, v)
e(k)	Impulsantwort bzw. Filterkern einer Glättungsfunktion
$e^x(u,v)$	Kantenrepräsentation (Edge Map) für vertikale Kanten
$e^y(u,v)$	Kantenrepräsentation (Edge Map) für horizontale Kanten
$f^{\Psi}(s, u, v)$	Kontinuierliche Wavelet-Transformierte einer zweidimensio-
	nalen Funktion $f(x, y)$ der Skala j an Position (u, v)
f	Rauschfreies Bildsignal
g	Verrauschtes Bildsignal
h(k)	Impulsantwort bzw. Filterkern eines digitalen Tiefpasses ei-
	ner Analysefilterbank
h'(k)	Impulsantwort bzw. Filterkern eines digitalen Tiefpasses ei-
	ner Synthesefilterbank
H(z)	Übertragungsfunktion eines digitalen Filters
g(k)	Impulsantwort bzw. Filterkern eines zu $h(k)$ komplementä-
	ren digitalen Hochpasses einer Analysefilterbank
g'(k)	Impulsantwort bzw. Filterkern eines zu $h'(k)$ komplementä-
/	ren digitalen Hochpasses einer Synthesefilterbank
G	Zweidimensionale Median-Filtermaske
K	Justierparameter für die Multiskalenkantendetektion
$L^2(\mathbb{R})$	Hilbertraum als Vektorraum über die reellen Zahlen mit ei-
	nem Skalarprodukt
$m_i^p(u,v)$	Matchwert im Subband p der Skala j an Position (u, v)
M(u, v)	Kantenbetragsbild
n	Gaußsches weißes Rauschen in der Wavelet-Domäne
n_i	Wavelet-Transformierte des Sensorrauschens
p	Ordnung eines digitalen Filters
p_n	Wahrscheinlichkeitsdichtefunktion des additiven weißen Rau-
	schens
p_w	Wahrscheinlichkeitsdichtefunktion der rauschfreien Wavelet-
	Koeffizienten (a-priori-Verteilung)
$p_{w d}$	Bedingte Verteilungsdichtefunktion für das Vorkommen des
	rauschbefreiten Wavelet-Koeffizienten w beim gegebenen
	rauschbehafteten Koeffizienten d
p^x, p^y	Interskalenprodukt der horizontalen bzw. vertikalen Subbän-
	der
r(k)	Impulsantwort bzw. Filterkern einer Glättungsfunktion
R	Quadratische Filterregion
s	Parameter der Laplace-Verteilung
T	Schwellwert im Wavelet-Raum zur Rauschunterdrückung
v	Parameter der Laplace-Verteilung

v	Eigenvektor einer Matrix
V_i	Funktionsraum der Skala j , wobei $f(x) \in V_{j+1}$ und $f(2x) \in$
5	V_i und damit $V_{i+1} \subset V_i$ gilt
W_i	Komplementärer Funktionsraum zu V_i , so das gilt $V_i =$
5	$V_{i+1} \oplus W_{i+1}$ und $V_{i+1} \perp W_{i+1}$
\mathcal{W}	Lokale Bildregion in der Wavelet-Repräsentation mit 3×3
	bzw. 5×5 Koeffizienten
w	Rauschbefreites Wavelet-Signal
\hat{w}	Schätzung der rauschfreien Wavelet-Koeffizienten
$w_i^p(u,v)$	Gewicht eines Wavelet-Koeffizienten im Subband p der Skala
J	j an Position (u, v)
x_i	Gemessene Wavelet-Repräsentation des realen Sensorbildes i
x	Vektor der gemessenen Wavelet-Repräsentationen der realen
	Sensorbilder $\mathbf{x} = (x_1, x_2, \dots, x_K)^T$
y	Wavelet-Repräsentation eines idealen Sensors bzw. einer rea-
	len Szene
\hat{y}	Schätzung der Wavelet-Repräsentation der realen Szene
y_0	Mittelwert der Wavelet-Verteilung der realen Szene
\mathbf{Z}	Gaußsches weißes Rauschen in der Bilddomäne
α	Lipschitz-Exponent
β_i	Beobachtungsoperator, der die Wavelet-Reprasentation ei-
	nes idealen Sensors in die Wavelet-Darstellungen des realen
0	Sensors i ubertunrt
þ	vector der beobachtungsoperatoren mit $\mathbf{p} = (\beta, \beta, \beta, \gamma^T)$
$\Gamma(m)$	(p_1, p_2, \dots, p_K) Commo Function mit $\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt$
r(x)	Schwellwertfunktion der Hard Thresholding Methode in Ab
$\eta_h(a)$	hängigkeit der Wavelet Koeffizienten d
n(d)	Schwellwertfunktion der Soft-Thresholding-Methode in Ab-
$\eta_s(\omega)$	hängigkeit der Wavelet-Koeffizienten d
$\theta(x)$	Eindimensionale Glättungsfunktion
$\Theta(x,y)$	Zweidimensionale Glättungsfunktion
Θ	Fusionsregel zur Kombination von Bilddaten auf Pixelebene
λ	Eigenwert einer Matrix
$\mu_{4,w}$	Wölbung (viertes Moment) der Wavelet-Koeffizienten-
·	Verteilung
$\mu_{\mathbf{x}}^{mod}$	Mittelwert innerhalb der Wavelet-Repräsentationen gemäß
	dem Bildentstehungsmodell
$\mu^{mess}_{\mathbf{x}}$	Gemessener Mittelwert innerhalb der Wavelet-
	Repräsentationen

σ	Rauschpegel
σ_n	Standardabweichung des Weißen Rauschens im Wavelet-
	Raum
σ_w	Standardabweichung der Wavelet-Koeffizienten
$\sigma_{\mathbf{x}}$	Standardabweichung innerhalb der gemessenen Wavelet-
	Repräsentationen \mathbf{x}
σ_y	Standardabweichung der Koeffizienten innerhalb der
	Wavelet-Repräsentation eines idealen Sensors
$\Sigma_{ m n}$	Kovarianzmatrix des transformierten Sensorrauschens
$\phi(x)$	Skalierungsfunktion
$\hat{\phi}(\xi)$	Fourier-Transformierte der Skalierungsfunktion
$\hat{\phi}(\omega)$	Fourier-Transformierte der Skalierungsfunktion $\phi(x)$
$\phi_{j,k}(x)$	Skalierungsfunktion mit der Skalierung 2^j und der Translati-
	on $k \cdot 2^j$
$\phi(x,y)$	Zweidimensionale Skalierungsfunktion
$\Phi^x(x,y)$	Separable zweidimensionale Skalierungsfunktion mit
	$\Phi^x(x,y) = \phi(x)\theta(y)$
$\Phi^y(x,y)$	Separable zweidimensionale Skalierungsfunktion mit
	$\Phi^y(x,y) = \theta(x)\phi(y)$
$\psi(x)$	Mutter- bzw. Basis-Wavelet
$\psi_{a,b}(x)$	Wavelet mit dem Skalierungsfaktor a und dem Verschie-
	bungsfaktor b mit $a, b \in \mathbb{R}$
$\psi_{j,k}(x)$	Wavelet einer dyadischen Familie mit der Skalierung 2 ^{<i>j</i>} und
	der Translation $k \cdot 2^{j}$
$\psi^D(x,y)$	Zweidimensionale Wavelet-Funktion mit diagonaler Orientie-
(H())	rung
$\psi^{\prime\prime}(x,y)$	Zweidimensionale Wavelet-Funktion mit horizontaler Orien-
(V())	tierung
$\psi^*(x,y)$	Zweidimensionale Wavelet-Funktion mit vertikaler Orientie-
\mathbf{V}	rung Communities and the Weight with $W^{r}(x,y)$
$\Psi^{\omega}(x,y)$	Separables zweidimensionales wavelet mit $\Psi^{\omega}(x,y) = \psi(x,y)$
$M^{\mathcal{U}}(m, u)$	$\psi(x)\sigma(y)$
$\Psi^{s}(x,y)$	Separables zweidimensionales wavelet mit $\Psi^{*}(x,y) = \theta(x) \phi(x)$
Л	ν(x)ψ(y) Transformationsvorschrift zur Überführung eines Bildes vom
Ŧ	Ortsraum in don transformiorton Raum
	Orostaum m den transformierten flaum

Maschinelles Lernen, Merkmalsextraktion und Klassifikation

(Abschnitte 2.4 und 4.3)

D_k	Detektionsrate einer Stufe k des Kaskadenklassifikators
$f_n(\mathbf{x})$	Testfunktion im Knoten n eines Entscheidungsbaumes basie-
	rend auf den Eingaberaum \mathbf{x}
E_n	Entropie innerhalb eines Knotens n eines Entscheidungsbau-
	mes vor der Aufspaltung
E'_n	Entropie innerhalb eines Knotens n eines Entscheidungsbau-
	mes nach der Aufspaltung
$E_{n,L}$	Entropie des linken Pfades nach der Aufspaltung im Knoten
7	
$E_{n,R}$	Entropie des rechten Pfades nach der Aufspältung im Kno- ten n
F	Gesamtfehlalarmrate eines Kaskadenklassifikators
F_k	Fehlalarmrate der Stufe k des Kaskadenklassifikators
$h_C(d)$	Histogrammwert für die Zelle C für die Gradientenrichtung d
$h_t(\mathbf{x})$	Klassifikationsergebnis eines Basisklassifikator anhand eines
	Merkmalsvektors \mathbf{x}
$H(\mathbf{x})$	Klassifikationsergebnis basierend auf der gewichteten Mehr-
	heitsentscheidung mehrerer Basisklassifikatoren
II(u, v)	Integralbild
k	Korrekturfaktor zur Einstellung der Schwelle zwischen den
	beiden Objektklassen
K	Normierungsfaktor für die Berechnung der HoG
L_n	Linker Pfad nach Aufspaltung des Eingaberaumes am Kno-
	ten n eines Entscheidungsbaumes
p_n^y	Wahrscheinlichkeit des Auftretens eines Beispiels der Objekt-
	klasse y im Knoten n eines Entscheidungsbaumes
R_n	Rechter Pfad nach Aufspaltung des Eingaberaumes am Kno-
	ten n eines Entscheidungsbaumes
Q_n	Differenz der Entropien im Knoten n eines Entscheidungs-
	baumes vor und nach der Aufspaltung
\mathcal{T}	Trainingsdatensatz
\mathcal{V}	Validierungsdatensatz
V	Gesamtergebnis basierend auf mehreren Klassifikationsergeb-
	nissen im Rahmen eines Voting-Verfahrens
v_j	Klassifikations ergebnis des Klassifikators j
$w_{t,i}$	Gewicht eines Beispiels i für das Training des Basisklassifika-
	tors h_t
\mathbf{x}_i	Gesamtmerk malsvektor eines Trainingsbeispiels \boldsymbol{i}
\mathbf{x}^m	Merkmalsvektor eines Meta Feature m
X	Gesamtdatensatz
y_i	Objektklasse des Beispiels i mit $y_i \in \{0, 1\}$

α_t	Gewicht einer Entscheidung eines Basisklassifikators h_t zur
	Berechnung der Gesamtaussage
β_j	Gewicht eines Klassifikatorergebnisses im Rahmen eines
	Voting-Verfahrens
ϵ_t	Trainingsfehler des Basisklassifikator h_t
θ_n	Schwellwert der Testfunktion f_n im Knoten n des Entschei-
	dungsbaumes

Tracking

(Abschnitt 4.4)

Α	Systemmatrix bzw. Zustandsübergangsmatrix
В	Steuermatrix
H	Messübergangsmatrix
K	Kalman-Verstärkung
Р	Kovarianzmatrix des Schätzfehlers des Systemzustandsvek-
	tors
Q	Kovarianzmatrix des Prozessrauschens
R	Kovarianzmatrix des Messrauschens
ΔT_k	Zeitintervall zwischen zwei Messzyklen
$\mathbf{u}(k)$	Steuervektor bzw. Eingangsvektor zum Zeitpunkt k
$\mathbf{v}(k)$	Eingangsstörung bzw. Prozessrauschen zum Messzeitpunkt \boldsymbol{k}
$\mathbf{w}(k)$	Messrauschen zum Zeitpunkt k
$\mathbf{x}(k)$	Wahrer Systemzustandsvektor zum Messzeitpunkt \boldsymbol{k}
$\hat{\mathbf{x}}(k)$	Schätzung des Systemzustandes zum Messzeitpunkt k
$\hat{\mathbf{x}}(k k-1)$	Prädiktion des Systemzustands zum Zeitpunkt k basierend
	auf den Informationen bis zum Zeitpunkt $k-1$
$\tilde{\mathbf{x}}(k)$	Schätzfehler des Systemzustandsvektors
$\mathbf{z}(k)$	Messvektor zum Zeitpunkt k
$\hat{\mathbf{z}}(k k-1)$	Prädizierter Messwert für den Zeitpunkt k auf der Basis der
	Informationen bis zum Zeitpunkt $k-1$
$\mathbf{v}(k)$	Innovation im Messraum
$\sigma_{a_x}, \sigma_{a_y}$	Standardabweichung der Beschleunigung in X- und Y-
- 0	Richtung
σ_u, σ_v	Unsicherheit des Fußpunktes eines Detektionsfenster im Bild

Abkürzungsverzeichnis

ABS	Antiblockiersystem
ACC	Adaptive Cruise Control
ADAS	Advanced Driver Assistance Systems
AEB	Automated Emergency Braking
BMBF	Bundesministerium für Bildung und Forschung
CAN	Controller Area Network
CCD	Charge-coupled Device
CMOS	Complementary Metal Oxide Semiconductor
CV	Computer Vision
CV	Constant Velocity
DLT	Direkte Lineare Transformation
DR	Detektionsrate
DWT	Diskrete Wavelet-Transformation
EKF	Extended Kalman Filter
ESP	Elektronisches Stabilitätsprogramm
FAS	Fahrerassistenzsystem
FIR	Fern-Infrarotkamera
FN	False Negative
FOV	Field of View
FP	False Positive
FPR	False Positive Rate
FR	Fehlerrate
FWT	Fast Wavelet Transform
HD	High Definition
HDR	High Dynamic Range
HMI	Human Machine Interface
HoG	Histogram of Oriented Gradients
HoSC	Histogram of Shape-Contexts
IEEE	Institute of Electrical and Electronics Engineers
KF	Kalman-Filter
LBP	Local Binary Pattern

LVDS	Low Voltage Differential Signaling
MAP	Maximum-a-posteriori
ML	Maximum Likelihood
NCAP	New Car Assessment Program
NIR	Nah-Infrarotkamera
NPV	Negative Prediction Value
PCA	Principal Component Analysis
PDF	Probability Density Function
PF	Partikelfilter
PMD	Photonic Mixer Device
PPV	Positive Prediction Value
ROC	Receiver Operating Characteristics
ROI	Regions of Interest
SNR	Signal-Noise-Ratio
SVD	Singular Value Decomposition
SVM	Support Vector Machines
TN	True Negative
ToF	Time-of-Flight
TP	True Positive
TTC	Time-to-Collision
VGA	Video Graphics Array
XML	Extensible Markup Language