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Abstract

The human voice is essential for day-to-day communication. Conse-
quently, impairment of speech, known as dysphonia, may have a signif-
icant impact on a person’s career and possible even their social life. To
understand the mechanisms and effects that distinguish a healthy voice
from an unhealthy one, the phonation process itself must be understood.
In the case of human phonation, computer aided simulation is a useful
tool, as it is non-invasive. However, if the target is to achieve an exact
replica, the complex nature of the phonation process pushes the bounds of
current research and also demands high computational capacities. Sim-
plifications in the model are therefore necessary to counteract these prob-
lems. This thesis analyses different kinds of simplifications and the error
which is caused by the corresponding model. These investigations were
carried out with the simulation tool CFS++, and extended to allow for
a precise simulation of the interaction between air flow and structural
(vocal fold) vibration. Furthermore, it is also capable of determining the
acoustic sources and propagation of aeroacoustical and vibration-induced
sound.
Firstly, the impact of the geometrical shape of the vocal folds is studied.
Thereby, a fully coupled fluid-structure simulation is employed to com-
pare two different kinds of vocal fold models. Moreover, investigations
have been performed if the coupling of fluid and structure can be reduced
to a pure flow simulation. The vocal fold vibration is thereby imitated by
special boundary conditions. In addition, different aeroacoustic analogies
are analysed and compared. These acoustic methods also permit a pre-
cise location of the sound sources during phonation. We also present and
enhancement of the model, which integrates and considers the acoustic
impact of the vocal tract, to calculate for instance the sound field of a
vowel.
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