Dissertation

Numerical simulation method for a precise calculation of the human phonation under realistic conditions

performed for the purpose of obtaining the academic degree of Doctor of Technical Science under the supervision of

Univ.Prof. Dipl.-Ing. Dr.techn. Manfred Kaltenbacher Institute of Mechanics and Mechatronics Measurement and Actuator, E325/A4

submitted to the Vienna University of Technology Faculty of Mechanical and Industrial Engineering

by

Dipl.-Math. Stefan Zörner

Mat.Nr. 0861599 Wilhelminenstr. 34/6 1160 Wien

Vienna, November 2013

Measurement-, Actuator-, and Simulation-Technology

Stefan Zörner

Numerical simulation method for a precise calculation of the human phonation under realistic conditions

Shaker Verlag Aachen 2014

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available in the Internet at http://dnb.d-nb.de.

Zugl.: Wien, TU, Diss., 2014

Copyright Shaker Verlag 2014 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the publishers.

Printed in Germany.

ISBN 978-3-8440-2687-0 ISSN 2195-0288

Shaker Verlag GmbH • P.O. BOX 101818 • D-52018 Aachen Phone: 0049/2407/9596-0 • Telefax: 0049/2407/9596-9 Internet: www.shaker.de • e-mail: info@shaker.de

Abstract

The human voice is essential for day-to-day communication. Consequently, impairment of speech, known as dysphonia, may have a significant impact on a person's career and possible even their social life. To understand the mechanisms and effects that distinguish a healthy voice from an unhealthy one, the phonation process itself must be understood. In the case of human phonation, computer aided simulation is a useful tool, as it is non-invasive. However, if the target is to achieve an exact replica, the complex nature of the phonation process pushes the bounds of current research and also demands high computational capacities. Simplifications in the model are therefore necessary to counteract these problems. This thesis analyses different kinds of simplifications and the error which is caused by the corresponding model. These investigations were carried out with the simulation tool CFS++, and extended to allow for a precise simulation of the interaction between air flow and structural (vocal fold) vibration. Furthermore, it is also capable of determining the acoustic sources and propagation of aeroacoustical and vibration-induced sound.

Firstly, the impact of the geometrical shape of the vocal folds is studied. Thereby, a fully coupled fluid-structure simulation is employed to compare two different kinds of vocal fold models. Moreover, investigations have been performed if the coupling of fluid and structure can be reduced to a pure flow simulation. The vocal fold vibration is thereby imitated by special boundary conditions. In addition, different aeroacoustic analogies are analysed and compared. These acoustic methods also permit a precise location of the sound sources during phonation. We also present and enhancement of the model, which integrates and considers the acoustic impact of the vocal tract, to calculate for instance the sound field of a vowel.

Acknowledgements

First and foremost, I want to thank my supervisor Univ.Prof. Dipl.-Ing. Dr. techn. Manfred Kaltenbacher, who supported me throughout my Ph.D., His ability to create a supportive environment inside the research group ensured constructive and positive working conditions. Most notabe are the technical discussions and the freedom of creativity that allows one to thrive in research. Furthermore, I am grateful for the chance to participate in the international renowned research group DFG FOR894. which was funded by the German Research Foundation (DFG) and the Austrian Science Fund (FWF) under grant No. I 532 N20, which is gratefully acknowledged. Head of the research group FOR894 is Prof. Dr. Ing. Dipl.-Math. Michael Döllinger, who is key to its success. I would like to thank him for taking interest in my work by accepting the task of second supervisor. The main research partners in this group were Univ.Prof. Dr. Ing. C. Brücker and Dipl.-Ing. W. Mattheus, who I like to thank for supplying me with fluid simulation data for the 3D aeroacoustic simulations. For interesting discussions and helpful collaboration I would also like to thank each head of the subgroups involved in the FOR894research, Prof. Dr. med. Dr. rer. nat. Dipl.-Phys. U. Eysholdt, Prof. Dr. rer. nat. Dipl.-Math. G. Leugering, Prof. Dr. rer. nat. Dipl.-Math. M. Stingl, Prof. Dr. Ing. R. Lerch, PD Dr. Ing. S. Becker, as well as their researchers and Ph.D. students Prof. Dr. Ing. R. Schwarze, Dipl.-Ing. W. Mattheus, Dr. Ing. M. Triep, Dipl.-Phys. C. Kirmse, Dipl.-Math. B. Schmidt, Dr. Ing. A. Sutor, Dipl.-Ing. S. Weiss, Dipl.-Ing. S. Kniesburges, Prof. Dr. Ing. J. Lohscheller, Dr. Ing. A. Yang and Dr. Ing. G. Luegmair.

Moreover, I would like to thank my colleagues at the Chair of Sensor Technology in Erlangen (Germany), my colleagues at the technical faculty in Klagenfurt (Austria) and my colleagues at the research group of Measurement and Actuators in Vienna (Austria) for a pleasant and enjoyable working environment. I especially want to mention Dr. techn. Andreas Hüppe, Dr. techn. Hendrik Husstedt and Dr. techn. Simon Triebenbacher for their support during technical discussions and helpful ideas, as well as their moral support, which led to a solid friendship.

For additional flow data, which enabled further 3D aeroacoustic simulations, I would like to thank Dr.-Ing. Petr Šidlof. With his friendly attitude and his eager will, we were able to develop a productive cooperation, which was intensified through the support of the Czech and Austrian agencies for international cooperation and mobility within ICM OeAD -MŠMT (project No. CZ 09/2013). This is also gratefully acknowledged.

I also like to thank U. Katz, K. Puschel, R. Polterauer and B. Pimperl for their great support in organisational matters, which allowed me to focus on my research.

Finally, I would like to express my gratitude for the support of my family - my siblings for their moral and personal encouragement and my parents for allowing me to freely develop my goals and supporting me in my chosen path.

Contents

1	Introduction						
	1.1	Motivati	on			1	
		1.1.1 C	Outline			3	
	1.2	Human p	phonation			4	
		1.2.1 B	asic laryngeal physiology			4	
	1.3	Current	status of research			6	
		1.3.1 L	umped element models			7	
		1.3.2 P	DE based models			9	
		1.3.3 N	faterial parameter measurement			12	
2	Governing equations and their FE-formulation						
	2.1	Fluid me	echanics			16	
		2.1.1 S	patial reference systems			16	
		2.1.2 N	avier-Stokes equations			19	
		2.1.3 F	inite element formulation			25	
		2.1.4 S	UPG method			27	
		2.1.5 T	'ime discretisation and linearisation			29	

	2.2	Solid :	mechanics	31
		2.2.1	Finite element formulation	34
		2.2.2	Structural damping (steady state case)	35
	2.3	Fluid-	Solid interaction	37
		2.3.1	Aitken relaxation	38
		2.3.2	Mesh smoothing	38
	2.4	Aeroa	coustics	40
		2.4.1	Lighthill's analogy	41
		2.4.2	Finite element formulation – wave equation	43
		2.4.3	Perturbation equations (incompressible flow)	44
		2.4.4	Alternative source terms for the wave equation	46
3	Voc	al fold	l models and material parameters	49
	3.1	2D ge	ometrical model	50
		3.1.1	M5 vocal fold shape	52
	3.2	Deterr	mining material parameters with the pipette aspira-	
		tion n	nethod	52
		3.2.1	Pipette aspiration set-up	54
		3.2.2	Pressure inducer and measurement	55
		3.2.3	Damping measurement set-up	56
		3.2.4	Numerical framework	58
		3.2.5	Results	59
4	2D	Simula	ation results	63
	4.1	Nume	rical framework	64
		4.1.1	Boundary conditions	64
		4.1.2	Grid dependency	65
	4.2	Comp	arison of vocal folds geometry	67
	4.3	Invest	igation of prescribed movement	71
		4.3.1	Vocal fold vibration	72
		4.3.2	Case study: homogeneous boundary condition	73
		4.3.3	Case study: 800Pa	76
		4.3.4	Case study: reformed vocal folds	77
		4.3.5	Case study: reformed vocal folds with prescribed	
			inflow	78

		4.3.6	Conclusion and summary	81				
5	5 3D Simulation results							
	5.1 Velocity driven flow							
		5.1.1	Geometry	85				
		5.1.2	Numerical framework	87				
		5.1.3	Similitude model	88				
		5.1.4	Acoustic sources	91				
		5.1.5	Aeroacoustic fields	92				
	5.2	Pressu	re driven flow	97				
		5.2.1	Geometry	98				
		5.2.2	Acoustic sources	100				
		5.2.3	Vocal tract influence	102				
		5.2.4	Acoustic impact of false vocal folds	106				
		5.2.5	Discussion and conclusions	107				
6	Cor	n	109					
	6.1	Outlo	ok	111				
Appendices								
\mathbf{A}	A Anatomical terms of location							
в	B Mathematics for engineers							
Bibliography								