TECHNISCHE UNIVERSITÄT MÜNCHEN

Lehrstuhl für Technische Elektronik

Integrated Nanomagnetic Logic System in Perpendicular Magnetic Media

Josef Kiermaier

Vollständiger Abdruck der von der Fakultät für Elektrotechnik und Informationstechnik der Technischen Universität München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs

genehmigten Dissertation.

Vorsitzender:

Univ.-Prof. Dr. rer. nat. Marc Tornow

Prüfer der Dissertation:

- 1. Univ.-Prof. Dr. rer. nat. Doris Schmitt-Landsiedel
- 2. Prof. Dr. György Csaba University of Notre Dame / USA

Die Dissertation wurde am 6. Juni 2013 bei der Technischen Universität München eingereicht und durch die Fakultät für Elektrotechnik und Informationstechnik am 30. Oktober 2013 angenommen.

Selected Topics of Electronics and Micromechatronics Ausgewählte Probleme der Elektronik und Mikromechatronik

Volume 45

Josef Kiermaier

Integrated Nanomagnetic Logic System in Perpendicular Magnetic Media

> Shaker Verlag Aachen 2014

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available in the Internet at http://dnb.d-nb.de.

Zugl.: München, Techn. Univ., Diss., 2013

Copyright Shaker Verlag 2014 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the publishers.

Printed in Germany.

ISBN 978-3-8440-2492-0 ISSN 1618-7539

Shaker Verlag GmbH • P.O. BOX 101818 • D-52018 Aachen Phone: 0049/2407/9596-0 • Telefax: 0049/2407/9596-9 Internet: www.shaker.de • e-mail: info@shaker.de

Abstract

As CMOS scaling will face fundamental limits, more and more attraction is dedicated to beyond CMOS technologies. A very promising candidate in this scope is Nanomagnetic Logic (NML), which exploits the interaction of field-coupled nanomagnets to perform logic operations and benefits from inherent memory functionality. NML is especially suited for ultra-low power applications and supplementary features complex digital majority votes, room temperature operation and high integration density. In this work NML in magnetic media with strong perpendicular magnetic anisotropy is favored over in-plane NML, because it provides shape flexibility of the single magnets and switching field modification by well-defined local ion beam irradiation. The purpose of this work is the demonstration of an operating NML system, the investigation of reconfigurable NML and the integration of NML in state-of-the-art CMOS circuits.

Etched islands of Co/Pt multilayer media represent the magnets, which feature singledomain behavior. Their magnetization direction in easy-axis defines the boolean logic state. Locally confined ion beam irradiation generates weakest links in the magnets, which govern the magnetic reversal process. Irradiation on the edge of the magnets originates asymmetric coupling to neighboring magnets and thereby implements directed signal flow. The development of NML systems, composed of Co/Pt magnets, is supported by calibrated micromagnetic simulations. New methods and setups for an enhanced metrology, e.g. an arbitrary magnetic field module integrated in a conventional MFM setup, enable the analysis of the quality of the magnetic media and the investigation of NML devices and systems.

An exemplary NML circuit is realized by a line of antiferromagnetically coupled magnets, acting like a magnetic inverter chain. A magnetic power clock is theoretically conceived and applied to drive the NML circuit. Antiferromagnetic ordering is propagated experimentally in the chain, verifying information propagation. A circular magnetic inverter chain is deployed to demonstrate the transport of arbitrary magnetic information. For the first time an NML circuit in perpendicular magnetic media is operated successfully over hundreds of clocking cycles. The invention and implementation of a programmable, nonvolatile magnetic input extends the NML technology and paves the way towards runtime reconfigurable NML systems. Furthermore, electrical interfaces are developed to integrate NML in the back-end of common CMOS circuits and provide a hybrid technology with symbiotic characteristics. An Oersted switching input interface and an extraordinary Hall-effect read-out sensor are presented as interfaces, that connect the electronic and magnetic domain. The resulting embedded programmable Nanomagnetic Logic technology combines logic and memory functionality and thereby potentially leads towards a new era of information processing.

Contents

1.	Intro	oduction	1
	1.1.	The vision of Nanomagnetic Logic	1
	1.2.	Scope and contribution of this work	4
2.	Stat	e-of-the-art of Magnetic Logic	5
	2.1.	Emerging logic and memory devices in in-plane magnetic media	5
		2.1.1. Spin wave logic	5
		2.1.2. Domain wall logic	7
		2.1.3. Domain wall memory	8
	2.2.	Nanomagnetic Logic	10
		2.2.1. The concept of quantum cellular automata (QCA) $\ldots \ldots \ldots$	10
		2.2.2. Nanomagnetic Logic in in-plane magnetic media	12
		2.2.3. Nanomagnetic Logic in perpendicular magnetic media	14
3.	Prin	ciples of micromagnetism and fringing field calculations	17
	3.1.	Micromagnetics	18
		3.1.1. Magnetization dynamics: The Landau-Lifshitz-Gilbert equation .	18
		3.1.2. The effective magnetic field and its energetics	19
		3.1.3. Solution of the micromagnetic equations with OOMMF	22
	3.2.	Calculation of magnetic fields	22
		3.2.1. Field generation by a current driven wire	23
		3.2.2. Field generation by a magnetization distribution	26
4.	Met	rology of magnetic material and logic devices	29
	4.1.	Transmission electron microscopy	29
	4.2.	Vibrating sample magnetometry	31
	4.3.	Magnetic force microscopy	33
	4.4.	Magneto-optical Kerr microscopy	41
	4.5.	Extraordinary Hall-effect measurement setup	42
5.	Fab	rication and fundamental investigations on Co/Pt nanomagnets	45
	5.1.	Fabrication of Co/Pt multilayer films	45
	5.2.	Thermal effects on the magnetic properties of Co/Pt media	47
	5.3.	Switching field modification of Co/Pt films by FIB irradiation	49
	5.4.	Co/Pt nanomagnets for logic applications	51
6.	Nan	omagnetic Logic: The magnetic inverter chain	55
	6.1.	Theory of field-coupled nanomagnets	55

	6.2.	Driving NML systems	57
		6.2.1. Demagnetization	58
		6.2.2. Clocking	59
		6.2.3. Magnetic power clock for perpendicular NML systems	59
	6.3.	Information propagation in magnetic wires	62
	6.4.	Theory of information transport in NML systems	66
	6.5.	Information transport in magnetic wires	67
		6.5.1. Device design and fabrication	67
		6.5.2. Simulation and measurement of the coupling strength	68
		6.5.3. Determination of the amplitude of the magnetic power clock	69
		6.5.4. Experimental demonstration of information transport	71
		6.5.5. Robustness of information transport in NML device	73
	6.6.	Influence of the coupling field and the spatial anisotropy distribution on	
		the reversal process	74
		6.6.1. Broadening of the SFD at supportive fringing fields	75
		6.6.2. Split switching behavior and temporary multi-domain states	77
	6.7.	Concepts for new NML devices based on magnetic inverter chains	79
	6.8.	Conclusion	80
7.	Rece	onfigurable Nanomagnetic Logic	83
	7.1.	Concept and functioning	83
	7.2.	Micromagnetic Simulation of the magnetic bilayer assembly	85
	7.3.	Experimental demonstration of the programmable device	88
	7.4.	Design perspectives for programmable NML devices	91
	7.5.	Conclusion	92
8.	Elec	trical Interfaces to integrate NML in common CMOS technology	93
	8.1.	Electrical input: Oersted switching interface	93
		8.1.1. Current induced switching modeling	93
		8.1.2. Experimental demonstration of an Oersted input interface	98
		8.1.3. Timing aspects for signal injection by input interfaces	102
		8.1.4. Conclusion	103
	8.2.	Electrical output: Extraordinary Hall-effect read-out sensor	105
		8.2.1. Concept and functioning of the EHE sensor	105
		8.2.2. Experimental demonstration of an EHE output interface	108
		8.2.3. Read-out ability by the EHE sensor	112
		8.2.4. Enhancements of the EHE sensor	113
		8.2.5. Conclusion	115
	8.3.	Alternative electrical interfaces: GMR and MTJ structures	116
		8.3.1. Physical principles of the giant magnetoresistance (GMR) \ldots .	116
		8.3.2. Physical principles of the magnetic tunnel junction (MTJ)	117
		8.3.3. Representative structure of a GMR/MTJ sensor $\hfill \ldots \ldots \ldots$	118
		8.3.4. Application of GMR and MTJ cells in perpendicular NML	118

9. Conclusion

Abbreviations and Symbols		
Α.	Related Publications of the Author	129
В.	References	133
C.	Related Theses	145