Einsatz von Industrierobotern als Koordinatenmessgeräte

Von der Fakultät für Maschinenbau der Helmut-Schmidt-Universität / Universität der Bundeswehr Hamburg

zur Erlangung des akademischen Grades eines Doktor-Ingenieurs genehmigte

DISSERTATION

vorgelegt von
Diplom-Ingenieur (FH)
Dennis Derfling
aus Hamburg.

Hamburg 2013

1. Gutachter: Univ.-Prof. Dr.-Ing. Jens P. Wulfsberg

 $Laboratorium\ Fertigungstechnik$

Helmut-Schmidt-Universität

Univ.-Prof. Dr.-Ing. Thorsten Schüppstuhl Institut für Flugzeug-Produktionstechnik Technische Universität Hamburg-Harburg

Tag der mündlichen Prüfung: 24. Juli 2013

2. Gutachter:

Berichte aus dem Institut für Konstruktions- und Fertigungstechnik

Band 30

Dennis Derfling

Einsatz von Industrierobotern als Koordinatenmessgeräte

Shaker Verlag Aachen 2013

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: Hamburg, Helmut-Schmidt-Univ., Diss., 2013

Copyright Shaker Verlag 2013 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8440-2383-1 ISSN 1861-5260

Shaker Verlag GmbH • Postfach 101818 • 52018 Aachen Telefon: 02407 / 95 96 - 0 • Telefax: 02407 / 95 96 - 9 Internet: www.shaker.de • E-Mail: info@shaker.de

Vorwort

Die vorliegende Dissertation entstand während meiner Tätigkeit als wissenschaftlicher Mitarbeiter und Doktorand am Laboratorium Fertigungstechnik der Helmut-Schmidt-Universität / Universität der Bundeswehr Hamburg.

Mein erster Dank gilt meinem Doktorvater, Prof. Dr. Jens P. Wulfsberg, dem Leiter des Laboratorium Fertigungstechnik, für die Eröffnung der Möglichkeit am LaFT zu promovieren, die uneingeschränkte Unterstützung meiner Arbeit und die große Freiheit, die er mir bei der Erstellung dieser Arbeit und in der Zeit am Lehrstuhl eingeräumt hat.

Prof. Dr. Thorsten Schüppstuhl danke ich für die bereitwillige Übernahme des Koreferats, das entgegengebrachte Interesse und das sorgfältige Lektorat.

In besonderem Maße bin ich Henry Loitz und Dr. Hubert Lettenbauer zu Dank verpflichtet, da sie es waren, die mich zum Laboratorium Fertigungstechnik geführt haben. Ohne ihr Engagement hätte ich zweifellos einen anderen Weg eingeschlagen.

Für die schöne gemeinsame Zeit danke ich allen Mitarbeitern des Lehrstuhls. Hervorheben möchte ich hier besonders meine langjährigen Kollegen Henry Loitz und Dr. Robert Ludwig. Nicht nur die Zusammenarbeit und der fachliche Gedankenaustausch im Rahmen unseres gemeinsamen Arbeitsgebiets der Robotik, sondern insbesondere die zahllosen "Klönschnacks", die nicht selten in kontroverse Wortgefechte mündeten, haben einen besonderen Zusammenhalt geschaffen. Meinen Kollegen Nils Clausing, Henry Hameister, Robert Weidner, Nanxi Kong, Silka Grimske, Benny Röhlig, Carsten Oberländer, Kim Schwake, Dr. Jörg Lehmann, Dr. Mahdi Terzi, Pascal Krenz und Dr. Peter Kohrs danke ich für das freundschaftliche Verhältnis und die gegenseitige Unterstützung. Dr. Lukas Beyer wird mir als stets hilfreicher Ansprechpartner und als bemerkenswerter Individualist in Erinnerung bleiben. Ein besonderer Dank gilt Robert Weidner für seine

außerordentlich große Hilfsbereitschaft. Schließlich danke ich meinen Studien- und Diplomarbeitern, den studentischen Hilfskräften sowie den Mitarbeitern des Labors und der zentralen Werkstatt für ihre tatkräftige Unterstützung.

Weiterer Dank gilt meinen Freunden, von denen ich Dr. Malte Schwab besonders hervorheben möchte, da er sich wie kein anderer in meine Situation hineinversetzen konnte und mir deshalb eine besondere Hilfe bei der Erstellung dieser Arbeit war.

Großer Dank gebührt auch meinen Eltern, die mir stets gut zugesprochen, mich uneingeschränkt gefördert und mir damit vieles ermöglicht haben.

Von ganzem Herzen bedanke ich mich bei meiner Frau Ines für ihren bedingungslosen Rückhalt, ihre grenzenlose Geduld und ihren liebevollen Zuspruch.

Hamburg, im September 2013

Dennis Derfling

Inhaltsverzeichnis

V	erzei	chnis d	er verwen	deten Formelzeichen	xi
A	bkür	zungsv	erzeichnis		xiii
1	Ein	leitung			1
2	Sta	nd des	Wissens u	ınd der Technik	3
	2.1	Herkö	nmliche Ko	ordinatenmesstechnik	. 3
		2.1.1	Grundprin	zip	. 3
		2.1.2	Standardk	inematik und Standardmesskonzepte	. 8
		2.1.3	Andere Ki	nematiken	. 11
	2.2	Messe	n mit Indus	trierobotern	. 16
	2.3	Kalibr	ierung		. 23
		2.3.1	Kinematise	che Modellierung	. 27
			2.3.1.1 S	tarrkörpermodelle für ideale Gelenke	. 28
			2.3.1.2 S	tarrkörpermodelle für nichtideale Gelenke mit einem	
			F	reiheitsgrad	. 31
			2.3.1.3	Getriebemodelle	. 34
			2.3.1.4 E	llastizitätsmodelle	. 34
			2.3.1.5 F	${\bf \hat{c}}$ ehlerkompensationsmodelle auf Wertetabellenbasis	. 35
			2.3.1.6 S	onstige Modelle	. 36
		2.3.2	Ausgleichs	rechnung	. 37
		2.3.3	Partielle P	oseinformationen	. 38
		2.3.4	Prinzip de	r kinematischen Schleife	. 39
		2.3.5	Taxonomie	e von Hollerbach und Wampler	. 40
		2.3.6	Messtechni	isches Schließen der kinematischen Kette	. 42
		2.3.7	Selbstkalib	rierung mit Kalibrierkörpern	. 43
		2.3.8	Werkzeugk	alibrierung	. 46

viii Inhaltsverzeichnis

		2.3.9	Messkopfkalibrierung	47	
	2.4	4 Visual Servoing			
	2.5	Sensor	rregelung	51	
3	Ziel	iel und Vorgehensweise			
4	Gru	ındlage	en einer verallgemeinerten Koordinatenmesstechnik	59	
	4.1	Forme	elemente	59	
		4.1.1	Die Spezielle Euklidische Gruppe	59	
		4.1.2	Mannigfaltigkeiten	61	
		4.1.3	Parametrisierungen der Speziellen Euklidischen Gruppe	63	
		4.1.4	Symmetriegruppe eines Formelements	64	
		4.1.5	Verallgemeinerte Koordinaten	65	
		4.1.6	Systematische Herleitung der Formelementtypen	67	
		4.1.7	Formelement-Beispiele	70	
		4.1.8	Restringierte Formelemente	71	
	4.2	Das al	llgemeine Koordinatenmessgerät	72	
	4.3	1.3 Messender Messkopf			
		4.3.1	Die Messrelation	74	
		4.3.2	Projektionen und Selektionen	74	
		4.3.3	Eigenschaften von Koordinatenmessgeräten mit messendem		
			$\operatorname{Messkopf}. \dots \dots$	78	
		4.3.4	Beispiel: Zweiachs-Roboter erfasst Abstand zu einem Punkt auf		
			einer Geraden	82	
		4.3.5	Beispiel: Kartesisches KMG mit messendem Kugelmesstaster	84	
		4.3.6	Beispiel: Lageerfassung eines Prismas mit vier Laser-		
			triangulationssensoren	85	
	4.4	Schalt	ender Messkopf	86	
		4.4.1	Eigenschaften von Koordinatenmessgeräten mit schaltendem		
			$\operatorname{Messkopf}. \dots \dots$	87	
		4.4.2	Mehrere Schaltbedingungen	89	
		4.4.3	Beispiel: Kartesisches Koordinatenmessgerät mit schaltendem		
			Kugelmesstaster	90	
5	Mes	sskonz	ept für Koordinatenmessroboter	93	
	5.1	Beurte	eilung der herkömmlichen Messkonzepte	94	

Inhaltsverzeichnis ix

	5.2	Messender Messkopf im Schaltbetrieb	. 96			
6	Ant	astregelung	99			
	6.1	Modellierung der Regelstrecke				
	6.2	Messwert-Jacobi-Matrix				
	6.3	Redundante Messkopf-Freiheitsgrade	. 104			
	6.4	Reglerauswahl	. 105			
	6.5	Bestimmung der Messwert-Jacobi-Matrix	. 105			
		6.5.1 Abhängigkeit der Messwert-Jacobi-Matrix von der Messkopfpose				
		und der Formelementlage	. 106			
		6.5.2 Analytische Herleitung	. 107			
		6.5.3 Konstante Messwert-Jacobi-Matrix	. 109			
		6.5.4 Automatische Ermittlung der zum Sollmesswert gehörigen				
		Messwert-Jacobi-Matrix	. 111			
	6.6	Festlegung der Reglerverstärkung	. 112			
7	Kal	Kalibrierung 11:				
	7.1	Selbstkalibrierung mit Kalibrierkörpern				
	7.2	Zwangsbedingungen	. 119			
	7.3	Lösungsfindung	. 122			
	7.4	Neuermittlung der Messwert-Jacobi-Matrix	. 127			
	7.5	Messkopfkalibrierung mit einem herkömmlichen Koordinatenmessgerät . 127				
	7.6	Werkzeugkalibrierung	. 128			
8	Mes	ssunsicherheit	129			
	8.1	Annahme- und Bestätigungsprüfung				
	8.2	Experimentelle Ermittlung der aufgabenspezifischen Mess- und				
		Positionierunsicherheit	. 137			
9	Koo	Koordinatenmessroboter-Framework				
	9.1	Framework-Architektur	. 144			
	9.2	Parametrisierungen für Formelemente	. 148			
	9.3	Kinematische Modellierung				
	9.4	Einschränkung des Arbeitsraums	. 156			
	9.5	Antastregelung	. 157			
		9.5.1 Messkopfgeschwindigkeit als Stellwert	. 160			

x Inhaltsverzeichnis

		9.5.2	Gelenkgeschwindigkeiten als Stellwerte	. 161		
		9.5.3	Kumulative Bahnkorrektur	. 162		
		9.5.4	Absolute Bahnkorrektur	. 166		
		9.5.5	Static-Look-And-Move	. 168		
	9.6	Auton	natische Bestimmung der Messwert-Jacobi-Matrix	. 170		
	9.7	Eingabe der Zwangsbedingungen				
9.8 Selbstkalibrierung						
10	Her	stellun	g von Nietbohrungen in der Flugzeugrumpfmontage	179		
	10.1	Mess-	und Bearbeitungsaufgabe	. 181		
	10.2	Robote	er	. 182		
	10.3	Messko	opf	. 183		
	10.4	Antast	regelung	. 186		
	10.5	5 Kalibrierung mit einem herkömmlichen Koordinatenmessgerät 18 $^{\prime}$				
	10.6	Selbstl	kalibrierung	. 188		
	10.7	Ermitt	ilung des Bohrer-TCPF	. 191		
	10.8	Ermitt	ilung der Messwert-Jacobi-Matrix	. 195		
	10.9	Bestin	nmung der Unsicherheiten	. 196		
11	Zusa	ammer	nfassung	199		
Li	terat	urverz	eichnis	205		