Ex VIVO INAKTIVIERUNG AUTOLOGER TUMORZELLEN MITTELS HYDROSTATISCHEN HOCHDRUCKS ZUR GENERIERUNG EINES GANZZELL-BASIERENDEN ANTI-TUMOR-VAKZINS

Der Technischen Fakultät der Universität Erlangen-Nürnberg

In Zusammenarbeit mit Strahlentherapie des Universitätsklinikums Erlangen

Zur Erlangung des Grades

DOKTOR-INGENIEUR

vorgelegt von

Eva-Maria Weiss

Erlangen - 2013

Als Dissertation genehmigt von der Technischen Fakultät der Universität Erlangen-Nürnberg

Tag der Einreichung:	16. November 2012
Tag der Promotion:	30. April 2013
Dekanin:	Prof. DrIng. habil. Marion Merklein
Berichterstatter:	Prof. DrIng. Eberhard Schlücker
	PD Dr. rer. nat. Udo S. Gaipl

Schriftenreihe des Lehrstuhls für Prozessmaschinen und Anlagentechnik

Band 18

Eva-Maria Weiss

Ex vivo Inaktivierung autologer Tumorzellen mittels hydrostatischen Hochdrucks zur Generierung eines Ganzzell-basierenden Anti-Tumor-Vakzins

D 29 (Diss. Universität Erlangen-Nürnberg)

Shaker Verlag Aachen 2013

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: Erlangen-Nürnberg, Univ., Diss., 2013

Copyright Shaker Verlag 2013 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8440-2202-5 ISSN 1614-3906

Shaker Verlag GmbH • Postfach 101818 • 52018 Aachen Telefon: 02407 / 95 96 - 0 • Telefax: 02407 / 95 96 - 9 Internet: www.shaker.de • E-Mail: info@shaker.de

Vorwort

Ohne den Beitrag einer Vielzahl von Personen wäre meine Forschungsarbeit nicht möglich gewesen. Daher gilt mein ganz besonderer Dank:

- meinem Doktorvater Prof. Dr.-Ing. Eberhard Schlücker, der mir eine Promotion an seinem Lehrstuhl ermöglichte.
- PD Dr. rer. nat. Udo S. Gaipl, der nicht nur das Koreferat übernahm, sondern mich vor allem mit fachlichem Rat und Diskussion die komplette Zeit der Promotion sehr gut betreute und mir auch bei Veröffentlichungen von Forschungsinhalten immer zur Seite stand.
- Prof. Dr. med. habil. Dr. rer. nat. Oliver Friedrich f
 ür die
 Übernahme des Pr
 üfungsvorsitzes.
- PD Dr. med. Rolf Buslei für die Betreuung als fachfremder Prüfer.
- Prof. Dr. med. Rainer Fietkau, Direktor der Strahlenklinik, der mich insbesondere nach meiner Elternzeit unterstützt hat, indem er mir einen Wiedereinstieg ermöglicht hat und mir ermöglichte auch nach Abschluss der Promotion Mitglied des Strahlenklinik-Teams zu bleiben.
- Dr.-Ing. Benjamin Frey (TUM), ohne ihn hätten die Forschungsarbeit und meine Person nie zueinander gefunden.
- Dr.-Ing. Benjamin Frey und Renate Sieber f
 ür die praktische Unterst
 ützung im Biolabor.
- Dr.-Ing. Nina Ebel, die mir immer mit Rat zur Seite steht und mir vorgelebt hat, dass die Vereinbarung von Familie und wissenschaftlicher Karriere durchaus möglich ist.
- Dr. rer. nat. Petra Buchanan, denn geteiltes Laborleid ist halbes Laborleid.
- Roland Wunderlich, Julia Schmitt, Judith Böhm und Anne-Marie Schwab die im Rahmen ihrer Abschlussarbeiten meine Forschung unterstützt haben
- Allen Mitarbeiterinnen und Mitarbeitern aus dem Biolabor der Strahlenklinik, f
 ür Verst
 ändnis, Geduld, Hilfe bei der Suche und Kaffee.
- Dipl.-Ing. Michael Dennerlein und Daniel Schirmer f
 ür Ihre Unterst
 ützung an der statischen Hochdruckanlage am iPAT.

- Dr. rer. nat. Dorota Lubgan und Kerstin Franz f
 ür ihre organisatorische Hilfe bei der Durchf
 ührung der Pr
 üfungsveranstaltung
- meinem Mann, der mir nicht nur oft den Rücken frei gehalten hat durch die Übernahme der Kinderbetreuung, sondern der für mich auch stets eine moralische Stütze war und mich immer wieder motiviert oder, wenn nötig, auf den Boden der Tatsachen zurückgeholt hat.
- meiner Familie

Aber erst durch die <u>finanzielle Unterstützung</u> folgender Personen/Einrichtungen war meine Doktorandenzeit realisierbar:

- Prof. Dr. Rainer Fietkau
- ELAN-Programm (Erlangener Leistungsbezogene Anschubfinanzierung und Nachwuchsförderung)
- Stipendienprogramm zur "Förderung der Chancengleichheit für Frauen in Forschung und Lehre" (Büro für Gender und Diversity, Erlangen; Finanzierung durch bayrische Landesmittel zur Gleichstellungsförderung)

Авк	ABKÜRZUNGSVERZEICHNIS		I .		
Авв	ILUNG	GSVERZ	EICHNIS	IV	
Тав	ELLEI	VERZE	ICHNIS	VII	
1	ABS	TRACT		1	
2	EINL	LEITUNG			
3	Med	EDIZINISCHER STAND DER TUMORTHERAPIE			
	3.1	Tumortherapie			
		3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6	Krebsentstehung Standardtumortherapien Immuntherapie und Ganzzellvakzine Tumorumgebung und Immunsuppression Immunogenität aktivierter Tumorzellen Kombination von Immuntherapie mit Radiotherapie	4 5 6 7 9 12	
4	ZIEL	SETZUN	IG	13	
5	Мат	ERIALIE	IN UND METHODEN	14	
	5.1	Verwer	1dete Geräte, Verbrauchsmaterialien und Reagenzien	14	
	5.2	Zellkul	tur	18	
		5.2.1 5.2.2 5.2.3	Zelllinien Kultivierungsbedingungen und Medienzusammensetzungen Passagieren und Konservieren der Zellen	18 18 19	
	5.3	Hochd	rucktechnik	20	
		5.3.1 5.3.2 5.3.3 5.3.4 5.3.5	Physikalische Grundlagen Einfluss auf molekulare Strukturen und zelluläre Systeme Anwendungen aus bio- und medizintechnischen Bereichen Hochdruckanlage und Versuchsaufbau Hochdruckbehandlung	20 22 23 24 25	
	5.4	Inaktiv	ierung von Tumorzellen durch Einfrier-Auftau-Zyklen und Hitze	25	
	5.5	Bestim	mung des Proliferationspotentials hochdruck-behandelter Zellen	26	
		5.5.1 5.5.2	In vitro Untersuchungen des Proliferationspotentials In vitro Untersuchungen des Proliferationspotentials	26 26	
	5.6	Durchf	lusszytometrie	27	
	5.7	Bestim	mung der morphologischen Veränderungen mittels Durchflusszytometrie	27	
	5.8	AnnexinA5-FITC / Propidiumiodid Färbung zur Abgrenzung apoptotischer und nektrotischer Zellen		28	
	5.9	Bestim	mung der Menge an nukleärer DNS – Zellzyklus und Zelltod	29	
	5.10	Bestim	mung des Gehalts an reaktiven Sauerstoffmetaboliten apoptotisch sterbender Zellen	. 30	
	5.11	Nachw	eis von Gefahrensignalen im Zellüberstand und in Zelllysaten	31	
		5.11.1 5.11.2 5.11.3	Probenvorbereitung Bestimmung der Proteinmenge mittels BCA-Assay Durchführung der Gelelektrophorese und des Westernblots	31 33 33	
	5.12	Mausm	ıodelle	36	

		5.12.1 5.12.2	Allgemeine Bedingungen Untersuchung des immunogenen Potentials hochdruckbehandelter Zellen im syngenen Tiermodell	36 36
	5.13	Bestim	mung des Immunglobulingehalts in Mausseren	37
		5.13.1 5.13.2 5.13.3	Serumherstellung aus Blutproben Gesamtgehalt an IgG und IgG Subklassen Antikörpern (ELISA) Tumorzellspezifischer Gehalt an IgG Antikörpern (Durchflusszytometrie)	38 38 39
	5.14	Lymph	ozytenbestimmung in Milz und Tumor mittels Durchflusszytometrie	40
		5.14.1 5.14.2 5.14.3	Gewebeaufschluss Herstellung einer Einzelzellsuspension Färbung der Immunzellen und durchflusszytometrische Bestimmung	40 40 41
	5.15	IL-1alp	ha Analyse in Überständen und Blutserum	42
	5.16	Statistis	sche Auswertung	42
6	Erg	EBNISS	E	43
	6.1	Inaktiv	ierungseffizienz und Zelltodesformen	43
		6.1.1 6.1.2	Proliferationsvermögen Unterscheidung apoptotischer und nekrotischer Zellen über	43
		613	AnnexinA5/Propidiumiodid Färbung Zelltodhestimmung über Analyse des Sub G1 DNS Gebalter	45 49
		6.1.4	Enge Zeitkinetik des Zelltodes von B16-F10 Tumorzellen	52
	6.2	Gefahr	hrensignale in Zellüberständen, Lysaten und Blutseren	
		6.2.1	Gefahrensignale HMGB-1 und HSP70 im Zellüberstand und in Zelllysaten hochdruckbehandelter Zellen	53
		6.2.2	IL-1alpha im Uberstand hochdruckbehandelter Zellen und Im Blutserum immunisierter Mäuse Reaktive Sauerstoffmetabolite (ROS) in hochdruckinaktivierten Zellen	55 58
	6.3	Immun	ogenität – Experimente im Tiermodell	59
		6.3.1	Orientierungsversuch (Vorimmunisierung von BALB/c Mäusen mit	
		6.3.2	hochdruckinaktivierten CT26-Tumorzellen) Präimmunisierungsversuche mit hochdruckinaktivierten CT26-Tumorzellen im	59
		6.3.3	Singenen Tierniouen Simultaner Immunisierungsversuch - Untersuchung des direkten Einflusses hochdruckbehandelter Tumorzellen nach Verabreichung vitaler Zellen	67
6.4		In vivo F10 Me	Experimente zur Untersuchung der Immunogenität hochdruckbehandelter B16- elanomzellen	71
	6.5	Therap Bestral	Therapieversuch – Immunisierung mit Hochdruckinaktivierten Zellen kombiniert mit Bestrahlung.	
7	Dise	SKUSSION		
	7.1	Inaktiv	ierungseffizienz	76
		7.1.1	Proliferationspotential und Zellvitalität	76
	7.2	Bewertung des immunogenen Potentials hochdruckbehandelter Zellen aus in vitro Untersuchungen		
		7.2.1 7.2.2	Zelltodesformen Gefahrensignale	77 79

		7.2.3	Hinweise auf eine IL1-alpha Beteiligung am immunogenen Potential	70
		7.2.4 7.2.5	Reaktive Sauerstoffmetabolite (ROS) in hochdruckinaktivierten Zellen Die Rolle von ROS in der Modulation der Immunogenität hochdruckbehandelter Zellen	81 81
	7.3	Bewer	tung des immunogenen Potentials hochdruckbehandelter Tumorzellen in vivo	84
		7.3.1 7.3.2	Anti-Tumor Effekte nach Vorimmunisierung mit druckinaktivierten Tumorzellen Simultane Immunisierung	84 87
	7.4	Immu	nogenität hochdruckbehandelter B16-F10 Melanomzellen	89
8	KLI	NISCHE	ÜBERTRAGBARKEIT	90
	8.1	Therap	pievorschlag für die klinische Anwendung	90
	8.2	Therap	pieversuch	92
9	Aus	BLICK		95
10	LITE	ERATUR	VERZEICHNIS	98
ANH	IANG	– ERG	ÄNZENDE ABBILDUNGEN	Т
AKA	DEM	ISCHER	LEBENSLAUF	VII
PUE	BLIKA	TIONSL	ISTE	IX

ABKÜRZUNGSVERZEICHNIS

ΔV_{el}	Elastische Volumenänderung
$\Delta V_{\rm W}$	Volumenänderung der wässrigen Lösung
200 MPa (Ax)	Inaktivierung durch einen Druck von 200 MPa und anschließende Inkubation in AnnexinA5
7-AAD	7-Aminoactinomycin
А	Fläche
APS	Ammoniumpersulfat
AxA5	Annexin A5
В	Breite des Tumors
BSA	Bovines Serum Albumin
CD	Cluster of differentiation
CO_2	Kohlendioxid
CRT	Calretikulin
СТ	Chemotherapie
CTL	Zytotoxische T-Lymphozyten
d	Tag, <i>day</i>
DCF	Fluoreszierendes 2,7-Dichlorfluoeszin
DCFH	2,7-Dichlorfluoreszin
DMS	Dehnungsmessstreifen
DMSO	Dimethylsulfoxid
DNS	Desoxyribonukleinsäure
DS	Doppelstrang-DNS
DZ	Dendritische Zelle
Е	Elastizitätsmodul
ECL	Chemolumineszenzverstärkers, enhanced chemiluminecence
EDTA	Ethylendiamintetraacetat
eIF2α	eukaryotischen translationsinitiierenden Faktor
ELISA	Enzyme Linked Immunosorbent Assay
ER	Endoplasmatisches Retikulum
F	Kraft
F/T	Einfrier/Auftau-Zyklen (freeze/thawn)
FACS	fluorescence activated cell sorting
FBS	Fetales Rinderserum (Fetal bovine serum)
FDA	Food and Drug Administration

FELASA	Federation of European Laboratory Animal Science Associations
F _G	Flüssigkeitsgewichtskraft
FITC	Fluoresceinisothyocyanat
FSc/SSc	Vorwärts- und Seitwärsstreulicht (forward scatter / sideward scatter)
g	Fallbeschleunigung
GV-SOLAS	Gesellschaft für Versuchstierkunde
Gy	Gray
h	Höhe
H ₂ DCF-DA	2,7-Dichlorfluoreszin Diacetats
H_2O_2	Wasserstoffperoxid
H_2SO_4	Schwefelsäure
HCL	Salzsäure
HEPES	2-(4-(2-Hydroxyethyl)- 1-piperazinyl)-ethansulfonsäure
HHP	Hydrostatischer Hochdruck (high hydrostatic pressure)
HMGB-1	High-Mobility-Group-Protein B-1
HRP	horseradish peroxidase
HSP	Hitzeschockprotein
IFN	Interferon
Ig	Immunglobulin
IL	Interleukin
IL-1R	IL-1 Rezeptor
IR	Infrarot
K	Kompressionsmodul
KW	Kompressionsmodul von Wasser
L	Länge des Tumors
LAK-Zellen	Lymphokinaktivierte Killerzellen
LMP	latent membrane protein
LPS	Lipopolysaccharid
M-CSF	Monozytenkolonien stimulierender Faktor
MeOH	Methanol
MFI	mean fluorescence intensity
MHC	Haupthistokompatibilitätskomplex, Major Histocompatibility Complex
MOMP	Permeabilisierung der mitochondrialen Außenmembran
MOMP	Permeabilisierung der mitochondrialen Außenmembran, mitochondrial outer membrane permeabilization
MPa	Megapascal

MyD88	Myeloid differentiation primary response gene (88)
NK-Zellen	Natürliche Killerzellen
OD	Optische Dichte
OP	Operation/Chirurgischer Eingriff
р	Druck
PAGE	Polyacryamid-Gelelektrophorese
PBS	Phosphatgepufferte Salzlösung (phosphate buffered saline)
PCR	Polymerase-Kettenreaktion (polymerase chain reaction)
PE	Streptavidin-Phycoerythrin
PERK Kinase	protein kinase RNA-like endoplasmic reticulum kinase
PI	Propidiumiodid
PP	Polypropylen
PS	Phosphatidylserin
ROS	Reaktive Sauerstoffmetabolite (reactive oxygen species)
RT	Radiotherapie
RT	Raumtemperatur
SDS	Natriumdodecyl Sulfat (sodium dodecyl sulfate)
SS	Einzelstrang-DNS
TA	Tumorantigen
TAP	Antigenpeptid-Transporter, Transporter associated with antigen processing
TBS	Tris-gepufferte Salzlösung (tris buffered saline)
TEMED	Tetramethylethylendiamin
TGF-β	transformierender Wachstumsfaktor Beta (transforming growth factor β)
Th1	T-Helfer Zelle Typ1
Th2	T-Helfer Zelle Typ2
TLR	toll like receptor
TMB	Tetramethylbenzidin
TNF	Tumornekrosefaktor
Treg	Regulatorische T-Zelle
UV	Ultraviolet
VEGF	Vaskulärer endothelialer Wachstumsfaktor, $Vascular \ Endothelial \ Growth \ Factor$
V _m	Molars Volumen
V _{Tumor}	Tumorgröße
X-Ray	Röntgenstrahlung
β-Me	B-Mercaptoethanol
6	Dichte

ABBILUNGSVERZEICHNIS

Abbildung 3-1: DNS-Struktur in Abhängigkeit von Druck und Temperatur aus [Macgregor Jr 2002]	22
Abbildung 5-1: Schematische 3D Darstellung der statischen Hochdruckanlage	24
Abbildung 5-2: Beurteilung der Zellvitalität anhand morphologischer Parameter mittels Vorwärts (FS)- und Seitwärts(SS)-streulicht des Durchflusszytometers	28
Abbildung 5-3: Differenzierung zwischen lebenden (Ax-PI-), apoptotischen (Ax+PI-) und nekrotischen (Ax+PI+) Zellen mittels Durchflusszytometrie	29
Abbildung 5-4: Exemplarische Darstellung einer durchflusszytometrischen Bestimmung der Zellzyklusphasen und des Sub-G1 Anteils von unbehandelten CT26 Tumorzellen anhand einer PI-Triton Färbung	30
Abbildung 5-5: Durchflusszytometrische Messung des ROS-Levels mittels Detektion der DCF Fluoreszenz	31
Abbildung 5-6: Exemplarische Darstellung eines Punktewolkediagramms nach Färbung von Milzzellen mit fluoreszenzmarkierten Antikörpern gegen CD3 und CD8	42
Abbildung 6-1: Koloniebildungspotential verschiedener Tumorzelllinien nach Behandlung mit HHP.	43
Abbildung 6-2: In vivo Proliferationsfähigkeit hochdruckbehandelter Tumorzellen in syngenen und xenogenen Tiermodellen.	44
Abbildung 6-3: Kinetik des Anteils vitaler Tumorzellen anhand der Zellgröße und Granularität nach Behandlung mit HHP	45
Abbildung 6-4 Kinetik des Anteils vitaler CT26, B16-F10, SW480 und MCF7 Tumorzellen 2, 8, 24 und 28 h nach Behandlung mit HHP (100, 200, 300, 400 und 500 MPa)	46
Abbildung 6-5: Anteil vitaler, apoptotischer und nekrotischer CT26 Tumorzellen 2, 8, 24 und 48 h nach Behandlung mit HHP (100, 200, 300, 400 und 500 MPa)	47
Abbildung 6-6: Anteil vitaler, apoptotischer und nekrotischer B16-F10 Tumorzellen 2, 8, 24 und 48 h nach Behandlung mit HHP (100, 200, 300, 400 und 500 MPa)	48
Abbildung 6-7: Anteil vitaler, apoptotischer und nekrotischer SW480 Tumorzellen 2, 8, 24 und 48 h nach Behandlung mit HHP (100, 200, 300, 400 und 500 MPa)	48
Abbildung 6-8: Anteil vitaler, apoptotischer und nekrotischer MCF-7 Tumorzellen 2, 8, 24 und 48 h nach Behandlung mit HHP (100, 200, 300, 400 und 500 MPa)	49
Abbildung 6-9: Zellzyklusphasen und Sub-G1 DNS Gehalt von CT26 Tumorzellen 2, 8, 24 und 48h nach Behandlung mit HHP (100, 200, 300, 400 und 500 MPa)	50
Abbildung 6-10: Zellzyklusphasen und Sub-G1 DNS Gehalt von B16-F10 Tumorzellen 2, 8, 24 und 48h nach Behandlung mit HHP (100, 200, 300, 400 und 500 MPa)	51
Abbildung 6-11: Zellzyklusphasen und Sub-G1 DNS Gehalt von SW480 Tumorzellen 2, 8, 24 und 48h nach Behandlung mit HHP (100, 200, 300, 400 und 500 MPa)	51
Abbildung 6-12: Zellzyklusphasen und Sub-G1 DNS Gehalt von MCF-7 Tumorzellen 2, 8, 24 und 48h nach Behandlung mit HHP (100, 200, 300, 400 und 500 MPa)	52
Abbildung 6-13: Prozentsatz vitaler (links) und apoptotischer (rechts) Anteil von B16-F10 Melanomzellen nach Hochdruckbehandlung (200 MPa und 500 MPa) in Abhängigkeit von der Zeit.	53

Abbildung 6-14: HMGB-1 Gehalt (Westernblot) hochdruckbehandelter (100, 200, 300, 400, 500 MPa) CT26 Tumorzellen nach 24 h.	54
Abbildung 6-15: HMGB-1 (links) und HSP-70 (rechts) Gehalt (Westernblot) in Überständen hochdruckbehandelter (100, 200, 300, 400, 500 MPa) Zellen zu den Zeitpunkten 4, 8, 24 und 48 h.	54
Abbildung 6-16: HMGB-1 Gehalt (Westernblot) in Überständen (oben) und Lysaten (unten) von hochdruckinaktivierten B16-F10 Tumorzellen nach 24 h (links) und 48 h (rechts)	55
Abbildung 6-17: IL-1α Gehalt in Blutseren von immunisierten BALB/c Mäusen und in Überständen von hochdruckbehandelten CT26 Tumorzellen	57
Abbildung 6-18: ROS-Level (rechts) in CT26 Tumorzellen nach Hochdruckbehandlung und Anteil vitaler, apoptotischer und nekrotischer Zellen (links)	58
Abbildung 6-19: Tumorwachstum, Überleben und IgG-Antikörper Serumspiegel von BALB/c Mäusen nach Vorimmunisierung mit hochdruckbehandelten (200, 300, 400 und 500 MPa) CT26 Tumorzellen	60
Abbildung 6-20: Tumorwachstum in vorimmunisierten BALB/c Mäuse nach Tumorimplantation mit vitalen CT26 Tumorzellen	63
Abbildung 6-21: Kaplan-Meyer Überlebenskurven vorimmunisierter BALB/c Mäuse nach Tumorimplantation mit vitalen CT26 Tumorzellen in	64
Abbildung 6-22: Verhältnis von IgG2a/IgG1 Antikörpern (A) und Gehalt spezifischer anti-CT26 IgG Antikörper (B) im Blutserum von immunisierten BALB/c Mäusen nach Tumorimplantation.	66
Abbildung 6-23: Tumorwachstum in BALB/c Mäuse nach Implantation vitaler CT26 Tumorzellen und nachfolgender (2 Tage) Immunisierung mit inaktivierten (HHP oder F/T) Tumorzellen und/oder Il-12	68
Abbildung 6-24: Kaplan-Meyer Überlebenskurven von BALB/c Mäusen nach Implantation vitaler CT26 Tumorzellen und nachfolgender (2 Tage) Immunisierung mit inaktivierten (HHP oder F/T) Tumorzellen und/oder II-12	69
Abbildung 6-25: Tumorinfiltrierende CD8 positive T-Zellen in CT26 Tumore nach Tumorimplantation und anschließender Immunisierung	69
Abbildung 6-26: Anteil an CD8 positiven T-Zellen in der Milz von BALB/c Mäusen (links), die mit 200 MPa hochdruckbehandelten CT25 Tumorzellen und /oder IL- 12 vakziniert wurden (V2-2). Die Überlebenskurve der Tiere ist rechts dargestellt	70
Abbildung 6-27: Versuchsanordnung der Mausbestrahlung am ONCOR der Strahlenklinik Erlangen.	72
Abbildung 6-28: Zeitlicher Ablauf des Therapieversuches	73
Abbildung 6-29: Tumorwachstum und Kaplan-Meier-Kurven nach Tumorimplantation mit vitalen CT26 Tumorzellen in BALB/c Mäusen, die anschließend mittels RT, IT oder Kombinationen behandelt wurden.	74
Abbildung 6-30: Anteil CD3 ⁺ CD8 ⁺ Zellen in der Milz von CT26 Tumor tragenden BALB/c Mäusen nach Bestrahlung mit X-Ray und/oder Immuntherapie mit 200 MPa inaktivierten Tumorzellen und/oder II-12	75

Abbildung 6-31: Relativer Anstieg von tumorzellspezifischen IgG Antikörpern in Seren	
von Mäusen, die zweimal mit hochdruckinaktivierten (200 MPa, 300 MPa, 400 MPa und 500 MPa) B16-F10 Tumorzellen geimpft worden waren	71
Abbildung 7-1: Tumorwachstum nach Vorimmunisierung und Tumorimplantation mit vitalen CT26 Tumorzellen in BALB/c Mäuse	86
Abbildung 7-2: Auf Grundlage der Vorimmunisierungsversuche und des simultanen Immunisierungsversuchs vorgeschlagenes Therapieschema;	92

TABELLENVERZEICHNIS

Tabelle 3-1: Abmessungen und Kennwerte	21
Tabelle 5-1: Übersicht über die verwendeten Geräte	14
Tabelle 5-2: Zusammenstellung der verwendeten Verbrauchsmaterialien	15
Tabelle 5-3: Auflistung der verwendeten Reagenzien	15
Tabelle 5-4: Antikörperliste	17
Tabelle 5-5: Auflistung der in den Experimenten verwendeten Zelllinien	18
Tabelle 5-6: Zusammensetzung der Kulturmedien	18
Tabelle 5-7: Zusammensetzung weiterer Medien	19
Tabelle 5-8: Übersicht der eingesetzten Mausmodelle	26
Tabelle 5-9: Zusammensetzung des RIPA-Puffers und der SDS-Probenpuffers nach Laemmli	32
Tabelle 5-10: Proteaseinhibitoren	32
Tabelle 5-11: Zusammensetzung der Gele (Mengen bezogen auf ein Gel)	34
Tabelle 5-12: Zusammensetzung der Puffer für die Elektrophorese und den Proteintransfer	34
Tabelle 5-13: Zusammensetzung des Dilutionspuffers	35
Tabelle 5-14: Zusammensetzungen der ECL-Reagenzien	35
Tabelle 5-15: Übersicht zu den durchgeführten syngenen Mausversuchen	36
Tabelle 5-16: Pufferzusammensetzung für IgG-ELISA	39
Tabelle 5-17: Zusammensetzung des Erylysepuffers	41
Tabelle 5-18: Zusammensetzung der Färbelösung	41
Tabelle 6-1: Übersicht über Gruppen, Behandlung und Gruppenstärke des Orientierungsversuchs	59
Tabelle 6-2: Übersicht über Gruppen, Behandlung und Gruppenstärke der Vorimmunisierungsversuche	62
Tabelle 6-3: Endpunkte der Tumorwachstumskurven (d=55)	63
Tabelle 6-4: Endpunkte der Gruppen in der Kaplan-Meyer-Kurve als Anteil der überlebenden Mäuse nach 55 Tagen	65
Tabelle 6-5: Anzahl tumorfreier immunisierter Mäuse nach erneuter Implantation von vitalen Tumorzellen (2. Tumorimplantation)	65
Tabelle 6-6: Gruppen der Tierexperimente zur Untersuchung der direkten Anti- Tumoreffekte (hochdruck)inaktivierter Tumorzellen und von IL-12-Injektionen	67
Tabelle 6-7: Übersicht der Gruppen des Therapieversuchs und ihrer Behandlungen	72