Eine Methode zur optimalen Redundanzallokation im Vorentwurf fehlertoleranter Flugzeugsysteme

Vom Promotionsausschuss der Technischen Universität Hamburg-Harburg zur Erlangung des akademischen Grades Doktor-Ingenieur genehmigte Dissertation

von

Dipl.-Ing. Christian Raksch

aus Neumünster

1. Gutachter: Prof. Dr.-Ing. Frank Thielecke

Institut für Flugzeug-Systemtechnik

Technische Universität Hamburg-Harburg

2. Gutachter: Prof. Dr.-Ing. Robert Luckner

Fachgebiet Flugmechanik, Flugregelung

und Aeroelastizität

Institut für Luft- und Raumfahrt Technische Universität Berlin

Tag der mündlichen Prüfung: 18. Februar 2013

Schriftenreihe Flugzeug-Systemtechnik

Band 1/2013

Christian Raksch

Eine Methode zur optimalen Redundanzallokation im Vorentwurf fehlertoleranter Flugzeugsysteme

Shaker Verlag Aachen 2013

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: Hamburg-Harburg, Techn. Univ., Diss., 2013

Copyright Shaker Verlag 2013 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8440-2039-7 ISSN 1861-5279

Shaker Verlag GmbH • Postfach 101818 • 52018 Aachen Telefon: 02407 / 95 96 - 0 • Telefax: 02407 / 95 96 - 9 Internet: www.shaker.de • E-Mail: info@shaker.de

Safety is built in, not added on. Duane Kritzinger [61]

Danksagung

Die vorliegende Arbeit ist während meiner Zeit als wissenschaftlicher Mitarbeiter am Institut für Flugzeug-Systemtechnik der Technischen Universität Hamburg-Harburg entstanden.

Für die Betreuung und die Freiheiten bei der Erstellung dieser Dissertation, die Erfahrungen in der Forschung, Lehre und im Projektmanagement, die unzähligen Dialoge und die Zeit am Institut für Flugzeug-Systemtechnik danke ich Prof. Dr.-Ing. Frank Thielecke. Für das Interesse an meiner Arbeit und die Erstellung des zweiten Gutachtens danke ich Prof. Dr.-Ing. Robert Luckner. Meine andauernde Faszination an der Systemtechnik bleibt Prof. Dr.-Ing. Udo B. Carl geschuldet, vielen Dank.

Für die Impulse und Dialoge zu dieser Arbeit danke ich allen ehemaligen Projektpartnern aus den Forschungsprojekten MOET, SIMKAB und BRINKS. Besonders für die Erfahrungen im Bereich der Sicherheits- und Zuverlässigkeits- analyse der Airbus Operations GmbH danke ich Dr.-Ing. Michael Oppermann und Dr.-Ing. Uwe Wiezcorek. Für Ihre Anteile an dieser Dissertation möchte ich zudem allen meinen ehemaligen Studenten danken, die Ihre Arbeit bei mir geschrieben haben. Zudem gilt mein Dank jenen, die durch kritische Nachfragen und Anregungen auf Konferenzen oder während der Doktorandendialoge meine Arbeit unterstützt und vorangebracht haben.

Die Zeit am Institut für Flugzeug-Systemtechnik war nicht nur von herausfordernden und interessanten Projekten geprägt, sondern auch von einzigartigen Kollegen. Ich bedanke mich herzlich bei allen ehemaligen Kollegen während meiner Zeit dort und besonders bei Dipl.-Ing. Martin Halle, Dipl.-Ing. Torben Pielburg, Dr.-Ing. Malte Pfennig und Dr.-Ing. Dominick Rehage.

Diese Arbeit und die vorherige Ausbildung wären ohne die Unterstützung meiner Eltern und meiner Familie so nicht möglich gewesen, hierfür werde ich Ihnen stets dankbar sein. Ganz besonders bin ich meiner Frau Franca zu Dank verpflichtet: sie hat mich seit der Konstruktionsaufgabe im dritten Semester immer unterstützt. Diese Arbeit ist ihr, unserem Sohn Lasse und unserer wachsenden Familie gewidmet.

Boostedt im Juli 2013

Christian Raksch

Inhaltsverzeichnis

Abbildungsverzeichnis						
Ta	belle	enverzeichnis	χV			
N	omen	ıklatur	xvii			
	Form	melzeichen	xvi			
	Indi	izes	xix			
	Abk	kürzungen	XX			
1	Einl	leitung	1			
	1.1	Vorentwurfsmethoden für Flugzeugsysteme $\ \ldots \ \ldots \ \ldots$	4			
	1.2	Ziele der Arbeit	11			
	1.3	Gliederung der Arbeit	13			
2	Entwicklung von Flugzeug-Systemarchitekturen					
	2.1	Entwicklungsprozess von Flugzeugsystemen	19			
	2.2	Integrierte Entwicklung von Systemarchitekturen $\ \ldots \ \ldots \ \ldots$	26			
3	Sicherheits- und zuverlässigkeitstechnische Bewertungsverfahren					
	3.1	Hybride Sicherheits- und Zuverlässigkeitsanalyse $\ \ldots \ \ldots \ \ldots$	31			
		$3.1.1 \hbox{Zuverl\"{a}ssigkeitsblockdiagramme} \dots \dots \dots \dots \dots$	34			
		3.1.2 Zustandsdiskretes Systemmodell	39			
		3.1.3 Hybrides Systemmodell	42			
	3.2	Methoden der Redundanzallokation $\ \ldots \ \ldots \ \ldots \ \ldots$	48			
		3.2.1 Übersicht bestehender Methoden	50			
		3.2.2 Zusammenfassender Vergleich und Diskussion	53			
	3.3	B Konzept zur Redundanzallokation komplexer Flugzeug-				
		Systemarchitekturen	54			

4	Hyb	ride Sy	stemmodellierung variabler Strukturen	61		
	4.1	Beschränkung binärer Entscheidungsbäume durch Nebenbedin-				
		gunge	n	62		
	4.2	Ermit	tlung der Systemfunktionen variabler Strukturen	67		
		4.2.1	Zuverlässigkeitsblockdiagramme variabler Strukturen	68		
		4.2.2	Hybride Systemmodelle variabler Strukturen	70		
	4.3	Variation serieller Strukturen				
		4.3.1	Serielle Strukturen von Zuverlässigkeitsblockdiagrammen	74		
		4.3.2	Serielle Strukturen von hybriden Systemmodellen	78		
	4.4	Ableitung degradierter Systemzustände				
	4.5	Berüc	ksichtigung summativer Zielgrößen	81		
5	Optimale Redundanzallokation variabler Strukturen					
	5.1	Formu	ılierung und Klassifizierung des Optimierungsproblems	83		
	5.2	Disku	ssion der Optimierungsverfahren	85		
		5.2.1	Vollständige Enumeration	89		
		5.2.2	Branch & Bound Verfahren	91		
		5.2.3	Genetischer Algorithmus	99		
	5.3	Vergle	eichende Bewertung der Optimierungsverfahren	108		
6	Unt	erstütz	ung der Architekturauswahl und Implementierung	113		
	6.1	Visualisierung mehrdimensionaler Zielwerte				
	6.2	Hierarchische Architekturauswahl				
	6.3	Integration in den Entwicklungsprozess				
	6.4	Illustratives Anwendungsbeispiel				
	6.5	Implementierung der Redundanzallokation				
7	Anwendung der Methode zur optimalen Redundanzallokation					
	7.1	Model	llbildung	142		
	7.2	.2 Lösungsinterpretation				
		7.2.1	Diskussion der Systemarchitekturen und Optimierungs-			
			ergebnisse	147		
		7.2.2	Diskussion des Genetischen Algorithmus	155		
8	Zus	ammen	fassung und Ausblick	159		

		Innansverzeichnis		
Α	Illustratives Beispiel	165		
В	Industrielles Beispiel	171		
Literaturverzeichnis				