Energy and water supply systems in remote regions considering renewable energies and seawater desalination

Dipl.-Ing. Kristina Bognar

von der Fakultät III - Prozesswissenschaften der Technischen Universität Berlin zur Erlangung des akademischen Grades

Doktorin der Ingenieurwissenschaften - Dr.-Ing. -

genehmigte Dissertation

Promotionsausschuss: Vorsitzender: Prof. Dr.-Ing. Felix Ziegler Berichter: Prof. Dr. Frank Behrendt Berichter: Prof. Dr. Ottmar Edenhofer

Tag der wissenschaftlichen Aussprache: 22. März 2013

Berlin, 2013 D 83

Schriftenreihe der Reiner Lemoine-Stiftung

Kristina Bognar

Energy and water supply systems in remote regions considering renewable energies and seawater desalination

D 83 (Diss. TU Berlin)

Shaker Verlag Aachen 2013

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available in the Internet at http://dnb.d-nb.de.

Zugl.: Berlin, Techn. Univ., Diss., 2013

Copyright Shaker Verlag 2013 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the publishers.

Printed in Germany.

ISBN 978-3-8440-1933-9 ISSN 2193-7575

Shaker Verlag GmbH • P.O. BOX 101818 • D-52018 Aachen Phone: 0049/2407/9596-0 • Telefax: 0049/2407/9596-9 Internet: www.shaker.de • e-mail: info@shaker.de

Abstract

Islands and remote regions often depend on the import of fossil fuels for power generation. Due to the combined effect of high oil prices and transportation costs, energy supply systems based on renewable energies are already able to compete with fossil-fuel based supply systems successfully. A limiting factor for development in arid regions is the fresh water scarcity resulting from low natural water stocks and excessive groundwater usage.

How seawater desalination and remote island-grids with a high share of renewable energies can benefit each other, is still not sufficiently investigated. To answer this and related research questions, a model for optimizing self-sufficient energy and water supply systems has been developed, using the modeling language GAMS. Based on sets of hourly data various scenarios implementing energy conversion technologies, energy storage systems and desalination processes have been simulated and technoeconomic optimizations accomplished. A global sensitivity and real option analysis addresses optimal system designs and finance strategies taking uncertain demand and price developments into consideration.

Key findings reflect that the integration of renewable energies is beneficial. On the Cape Verde island Brava, that has been chosen as a case study in the framework of this research, power is currently provided by diesel generators at prices of 0.25 to $0.31 \in /kWh$ and water is sold for 2.35 and $4.93 \in /m^3$ depending on the quantity. With the recommended wind-battery-diesel and desalination supply system specific electricity costs ranging from 0.15 to $0.21 \in /kWh$ and water costs of $1.53 \in /m^3$ are achievable.

Effects of integrating desalination as a dynamic load complementing consumer induced load curves in stochastically fluctuating energy systems are analyzed as well as the respective benefits highlighted: Excess wind energy, fuel consumption, and required energy storage capacities can be minimized resulting in lower specific electricity costs. From five thermally and electrically driven desalination processes a variable operating reverse osmosis unit is the most flexible process facing intermittent and part-load operation.

To determine the technological and economic robustness of such an energy and water supply system the most sensitive parameters are identified and various analyses performed. The approaches that have been introduced and respectively the results derived for the Cape Verde island Brava have been further underlined by investigating comparable island-grids and are transferable to a global perspective.

Zusammenfassung

Inseln und abgelegene Regionen sind für die Energieversorgung häufig auf den Import fossiler Energieträger angewiesen. Auf Grund hoher Diesel- und Transportkosten rechnen sich Versorgungssysteme basierend auf erneuerbaren Energien wirtschaftlich schon heute. Ein limitierender Faktor für die Entwicklung arider Regionen ist die Wasserknappheit, die in der Regel auf geringe natürliche Wasservorkommen und die Übernutzung des Grundwassers zurückzuführen ist.

In wie weit Meerwasserentsalzungsanlagen in Inselnetzen mit einem hohen Anteil erneuerbarer Energien energetische und ökonomische Vorteile bringen kann, ist noch ungenügend untersucht. Um diese und ähnliche Forschungsfragen beantworten zu können, wurde ein Modell zur Optimierung von autarken Energie- und Wasserversorgungskonzepten in der Modellierungsumgebung GAMS entwickelt. Basierend auf stündlich aufgelösten Nachfrage-, Windgeschwindigkeits- und Solareinstrahlungsdaten werden Szenarien techno-ökonomisch und ökologisch optimiert, in denen verschiedene Umwandlungstechniken regenerativer und fossiler Energien, thermische sowie elektrische Energiespeicher und Entsalzungsprozesse miteinander kombiniert werden. Eine globale Sensitivitäts- und auch Realoptions-Analyse beschäftigt sich mit Effekten von Nachfrageveränderungen, preislichen sowie technologischen Unsicherheiten und Ihren Auswirkungen auf ein langfristig robustes Versorgungskonzept.

Es wird gezeigt, dass die Integration von erneuerbaren Energien und der Meerwasserentsalzung in allen untersuchten Inselnetzen vorteilhaft sein kann. Gegenstand der Untersuchung ist die kapverdische Insel Brava, wo der von Dieselmotoren generierte Strom derzeit 0,25 bis 0,31 €/kWh kostet und Trinkwasserpreise bei 2,35 bis 4,93 €/m³ liegen. Unabhänging von der Preispolitik können mit dem errechneten Konzept spezifische Stromkosten von 0,15 bis 0,21 €/kWh und Wasserkosten von 1,53 €/m³ erreicht werden.

Weitere Ergebnisse sind u.a., dass eine Meerwasserentsalzungsanlage bei stark fluktuierenden Versorgungsstrukturen als dynamische Last Vorteile bringen kann: Überschüssige Windenergie, der Dieselverbrauch sowie die Kapazität von Stromspeichern können gesenkt werden und damit auch die spezifischen Stromkosten. Von den fünf betrachteten Entsalzungstechnologien ist trotz der sensiblen Membrane die variabel betriebene Umkehrosmose-Anlage die robusteste im Umgang mit unstetiger, anteiliger und abreißender Energieversorgung.

Um die technologische und ökonomische Verlässlichkeit und Optimalität des Versorgungskonzepts prüfen zu können, werden die sensibelsten Parameter bestimmt und deren Auswirkungen in weitreichenden Sensitivitätsanalysen untersucht. Vorgestellte Ansätze und Ergebnisse können durch die Betrachtung von ähnlichen Inselnetzen bestätigt und daher auch global auf weitere Regionen übertragen werden.

Contents

1	Intr	ntroduction		
	1.1	Motiva	ation	1
	1.2	Resear	rch objective	3
	1.3	Struct	sure of thesis	4
2	Bac	kgrou	nd	5
	2.1	Energ	y supply structures	5
		2.1.1	Demand Side Management	6
		2.1.2	Renewable power generation in island grids	7
	2.2	Renew	vable energy technologies	9
		2.2.1	Photovoltaics	9
		2.2.2	Concentrated Solar Power	10
		2.2.3	Wind energy converters	13
	2.3	Energ	y storage systems	14
		2.3.1	Thermal energy storage systems	14
		2.3.2	Electricity storage systems	16
	2.4	Backu	p system	21
	2.5	Seawa	ter desalination in remote regions	22
		2.5.1	Basics of water	22
		2.5.2	Desalination processes	24
		2.5.3	Variable operating desalination	30
		2.5.4	Desalination powered by renewable energies	31
	2.6	Small	Island Developing States	33

3	Met	<i>A</i> ethodology		
	3.1	Simula	ation of energy systems	36
	3.2	Simula	ation of desalination units	39
	3.3	Optim	ization approach	41
		3.3.1	GAMS/OSICplex	42
		3.3.2	Characteristics of developed program	43
	3.4	Sensiti	ivity analysis	47
	3.5	Real o	ption analysis	48
	3.6	Ecolog	gical constraints within the model	51
4	Mo	del		53
	4.1	Object	tive function and main constraints	54
	4.2	Model	ing total costs	57
	4.3	Model	ing photovoltaic energy generation systems	58
		4.3.1	Modeling energy flows (PV)	58
		4.3.2	Modeling total costs (PV)	58
	4.4	Model	ing concentrated solar power systems	59
		4.4.1	Modeling energy flows (CSP)	59
		4.4.2	Modeling total costs (CSP)	60
	4.5	Model	ing wind energy generation systems	60
		4.5.1	Modeling energy flows (wind)	60
		4.5.2	Modeling total costs (wind)	62
	4.6	Model	ing diesel generator systems	62
		4.6.1	Modeling energy flows (diesel)	62
		4.6.2	Modeling total costs (diesel)	65
	4.7	Model	ing desalination systems	66
		4.7.1	Modeling energy flows (Desal)	66
		4.7.2	Modeling total costs (Desal)	67
	4.8	Model	ing energy and water storages	67
		4.8.1	Modeling electricity storage systems (ESS)	68
		4.8.2	Modeling thermal energy storage systems (TSS)	71
		4.8.3	Modeling water storage systems (WSS)	72

	4.9	Limita	ations of the model \ldots	. 72
		4.9.1	Time discretization	. 73
		4.9.2	Boundaries and mutual exclusivity	. 73
		4.9.3	Reduction of computational cost	. 74
		4.9.4	Capacity of diesel generators	. 76
5	Cas	e Stud	ly: A Cape Verde island	78
	5.1	Backg	round of Cape Verde	. 78
	5.2	Energ	y and water demand on Brava	. 80
	5.3	Renev	vable energy potential	. 81
	5.4	Input	data in the model	. 84
		5.4.1	Economic input data	. 84
		5.4.2	Input data PV-systems	. 84
		5.4.3	Input data CSP	. 85
		5.4.4	Input data wind energy converters	. 86
		5.4.5	Input data diesel generators	. 87
		5.4.6	Input data Electricity Storage Systems	. 88
		5.4.7	Input data thermal energy storage systems	. 89
		5.4.8	Input data Desalination	. 90
		5.4.9	Input data water storage system	. 91
6	Res	ults		92
	6.1	Valida	ation of model	. 92
	6.2	The o	ptimal energy and water supply system	. 95
	6.3	Suppl	y scenarios in comparison	. 96
		6.3.1	Integrating renewable energies into the current supply system	96
		6.3.2	The optimal desalination process	. 99
		6.3.3	Robustness of the optimal desalination system	. 104
		6.3.4	Optimal electricity storage system	. 105
	6.4	Interfe	erence of energy storage systems and desalination processes	. 107
	6.5	Appro	each and results of a global sensitivity analysis	. 110
		6.5.1	Impact of wind velocity and solar irradiation	. 110
		6.5.2	Definition of parameters	. 111

		6.5.3	Sensitivity of parameters	. 113
		6.5.4	Probability of technology implementations	. 116
		6.5.5	Impact of sensitive parameters on the energy supply system	. 119
		6.5.6	Impact of sensitive parameters on the desalination unit $\ . \ .$. 123
	6.6	Econo approa	mic reflection: Investment strategies based on the real option ach (ROA)	. 127
	6.7	Globa	l reflection: Concepts for other islands \hdots	. 131
7	Con	clusio	ns	134
	7.1	Summ	ary and conclusions	. 134
	7.2	Recon	nmendations for further research $\ldots \ldots \ldots \ldots \ldots \ldots$. 138
Bi	bliog	graphy		143
A	Mo	del Scr	ipt	154
в	Ren	ewable	e energy technologies not modeled	185
	B.1	Hydro	power	. 185
	B.2	Ocean	powers	. 186
	B.3	Geoth	ermal energy	. 188
	B.4	Energe	etic use of biomass	. 189
С	Ren	ewable	e energy powered desalination	192

List of Figures

2.1	Simple chain from extraction to end-use within an energy supply system	5
2.2	Parabolic Trough (upper left), Linear Fresnel (bottom left), Solar tower (upper right) and Solar Dish (bottom right) [17]	11
2.3	Types of thermal energy storage systems	14
2.4	Ragone Diagram of electrochemical storages	19
2.5	Global stock of water [38]	23
2.6	Overview of desalination methods	24
2.7	Multi-effect distillation process [126]	25
2.8	Humidification-dehumidification process [126]	27
2.9	Membrane distillation process [44]	28
2.10	Mechanical vapour compression process [127]	29
2.11	Reverse osmosis process [127]	29
2.12	Technology combinations RE-powered desalination plants	31
2.13	Concept of Enercon wind-RO system [41]	33
2.14	Development stage and capacity range of the main RE-desalination technologies [46]	34
2.15	SIDS worldwide	35
2.1	Modeling programs for anorgy systems in comparison	27
0.1 9.0	One is the first of the state o	57
3.2	Overview of the optimization approach	41
3.3	Methodology overview	43
3.4	Flow chart of optimization approach	45
3.5	Trajectory example of Morris analysis (left) and relevance of param- eters (right)	47
3.6	Binomial pricing tree for two periods: Diesel price development in 20 years	51

4.1	Overview of model
5.1	The island state Cape Verde
5.2	Seasonal profile of electricity demand on Brava
5.3	Solar irradiation in Cape Verde
5.4	Monthly average of wind speeds on Brava
5.5	Wind directions in Cape Verde
5.6	Renewable energy potentials on Brava (top left: pumped hydro, top right: ocean powers, bottom left: geothermal (Fogo), bottom right: precipitation/biomass) [110]
5.7	Power curve of the Vergnet 275 kW turbine
5.8	Power curve of the Norwin 225 kW turbine
5.9	Power curve of the Gyro 10 kW turbine
5.10	Diesel efficiency curve
6.1	Desalination potential by excess wind electricity
6.2	Levelized costs of electricity and water depending on fuel costs 102
6.3	Levelised costs of electricity and water
6.4	Power variations of a variable operating reverse osmosis plant $\ \ . \ . \ . \ 103$
6.5	Economic effects of varying energy storage systems $\ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
6.6	Influence of varying storage technologies on the supply system $\ . \ . \ . \ 107$
6.7	Energy flows of 48 hours depending on ESS $\hfill \ldots \ldots \ldots \ldots \ldots \ldots 108$
6.8	Sensitivity of solar irradiation and wind velocity
6.9	Sample of Morris results
6.10	Local one-dimensional sensitivity analysis
6.11	Distributions of the Monte Carlo Analysis
6.12	Distribution of the energy generation mix
6.13	Comparative distribution of energy generation technologies 120
6.14	Effect of increasing energy consumption and fuel price on the system and electricity costs
6.15	Renewable energy mix depending on diesel price and variable desali- nation costs
6.16	Effects of demand and fuel prices on the energy system $\ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
6.17	Distribution of desalination technologies

6.18	Selection pattern of desalination process: mechanical vapour com- pression (MVC)
6.19	Selection pattern of desalination process: variable reverse osmosis (var-RO)
6.20	Selection pattern of desalination process: MVC and RO 126
6.21	Results of sensitivity analysis considering the diesel price $\ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
6.22	Two-step binomial decision tree of real option approach
6.23	Comparison of costs without uncertainty with and without future options
6.24	Result of real option approach for investment strategy
B.1	Physical correlations in a hydroelectric power station $[127]$ \ldots 186
B.2	Energy conversion options from biomass [128]
B.3	Biomass potential on SIDS
C.1	Possible combinations of renewable energy with desalination technolo- gies [46]

List of Tables

2.1	Electricity storage classification by duration	16
2.2	Total dissolved solids in waters $\hfill \ldots \hfill \hfill \ldots \hfill \hfill \ldots \hfill \ldots \hfill \ldots \hfill \ldots \hfill \ldots \hfill \ldots \hfill \ldots$	23
2.3	Islands globally [70]	35
3.1	Overview of modeling programs for desalination $\hdots \ldots \hdots \hdots\hdots \hdots$	39
3.2	Analogy between Stock Options and Real Options	49
3.3	Option valuation methods $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	50
3.4	Classification and characterization of environmental impacts $\ . \ . \ .$	52
4.1	Optimal supply system - default	54
4.2	Hours of autonomy used for electrical energy storage systems	75
5.1	Technological data for PV systems	85
5.2	Technological data for CSP systems	86
5.3	Technological data for wind turbine systems $\ . \ . \ . \ . \ . \ .$	87
5.4	Technological data for diesel generators	88
5.5	Technological data for electricity storage systems $\hfill \hfill \hfil$	90
5.6	Technological data for thermal storage systems	91
5.7	Technological data for desalination systems	91
6.1	Comparison of optimal energy supply system using HOMER and GAMS-model	93
6.2	Comparison of optimal energy and water supply system using HOMER and GAMS-model	94
6.3	Optimal supply system - default	95
6.4	Supply systems of energy scenarios	97
6.5	Energy and water balances per year	97

6.6	Deviations within the local sensitivity analysis concerning desalination 104
6.7	Input parameters for sensitivity
6.8	Output variables for sensitivity
6.9	Numerical results of Morris approach
6.10	Supply system scenarios for the real option analysis \hdots
6.11	Properties of other considered islands

List of Acronyms

a-Si AOSIS BaU	Amorphous silicon thin-film solar cell Alliance of Small Island States Business as usual (scenario)	
bin	Binary variable to identify the interpolation range for diesel efficiency linearisation	
$c_{\rm CO_2}$	Specific carbon dioxide emission cost	[€/tCO ₂]
cE,O&M	O&M cost as a specific cost based on the electricity produced	[€/kWh y]
$c_{\rm fuel}$	Specific fuel oil cost based on the energy inside the fuel	$[{\rm €/kWh_{fuel}}]$
Cland	Specific mean land cost	[€/m ²]
^c P,O&M	O&M cost as a specific cost based on the installed power	[€/kW y]
c_{plant}	Capacity specific cost of the type of desalination plant	$[{\rm €}/({\rm m}^3/{\rm d})]$
$c_{rep,E}$	Specific energy replacement cost	$\left[\frac{e/kWh}{replacement}\right]$
c _{rep,P}	Specific power replacement cost	$\left[\frac{e/kW}{replacement}\right]$
c _{Res}	Specific cost of resource consumption and deple- tion	[€/t]
$c_{w,O\&M}$	O&M cost as a specific cost based on the water produced	$[{\rm €/kWh}~y]$
C _{WSS}	Specific capacity investment cost	[€/m ³]
CE.	Specific energy investment cost	[€/kWh]
cP	Specific power investment cost	[€/kW]
c-Si	multi crystalline solar cells	
CAES	Compressed air energy storage	
$Capacity_{Desal}$	Installed production capacity of desalination plant technology	$\left[\mathrm{m}^{3}/\mathrm{d}\right]$
CdTe	cadmium-telluride thin-film photovoltaic module	
CIS	copper-indium-selenium thin-film photovoltaic module	
CSP	Label of the concentrated solar power subsystem	
d	Set of all days in the time-frame of the model	
DSM	Demand Side Management	
Deration _i	Losses coefficient of subsystem "i" other then con- version	[-]

Desal	Label of the desalination subsystem	
diesel	Label of the diesel generators subsystem	
DP	Diesel price	
$\operatorname{Dump}_{\operatorname{el}}$	Flux of electric energy being dumped out of the system	[kWh/h]
$\mathrm{Dump}_{\mathrm{th}}$	Flux of thermal energy being dumped out of the system	[kWh/h]
$E_{\rm cons,el}$	Electricity consumption of the desalination system to produce desalted water	$[kWh/m^3]$
E _{i,in}	Flux of electric energy entering the technology of subsystem ""	[kWh/h]
E _{i,out}	Flux of electric energy leaving the technology of subsystem ""	[kWh/h]
Ei	Installed energy capacity of the technology of sub- system "i"	[kWh/h]
ESS	Label of the electric energy storage subsystem	
n	Efficiency of conversion or round-trip efficiency	[-]
$\eta_{\rm el}$	Electrical efficiency of conversion, produced elec- tricity - spent energy ratio	[-]
$\eta_{\rm th}$	Thermal efficiency of conversion, produced ther- mal energy - spent energy ratio	[-]
Exist _i	Binary variable that allow the size of the system to be either inside the range or zero	
f _{O&M}	O&M cost factor as a percentage of the investment cost	$[y^{-1}]$
FLH	Full load hours	[h/v]
i	Interest rate	[-]
$H2_{PEMFC}$	Hydrogen energy storage system with proton ex- change membrane (fuel cell)	
$\mathrm{H2}_{\mathrm{Engine}}$	Hydrogen energy storage system coupled with combustion engine	
HDH	Humidification-Dehumidification (desalination technology)	
kcoa	Energy specific CO_2 emission from the fuel	$\left[\frac{\text{tCO}_2}{1-3M_2}\right]$
ki u	Area coefficient for auxiliary space needed	[_]
LA	Lead-acid battery	[]
λ	Weighting factor of interpolation for diesel effi- ciency linearisation	[-]
LCoE	Levelized costs of electricity	[€/kWh]
LCoW	Levelized costs of water	[€/m ³]
Li-ion	Lithium-ion battery	1 / 1
Load	The hourly electric load of the island under exam	[kWh/h]
Losses	The hourly parasitic losses in terms of fraction of the energy stored	$[h^{-1}]$
LU_i	Specific land use of the technology of subsystem "i"	$\left[\mathrm{m}^2/\mathrm{kW}\right]$

$\operatorname{MaxP_{i}}$	Maximum size bound for the technology of subsystem ""	[kW]
MD	Membrana Distillation (desclination technology)	
MED	Multi Effect Distillation (desalination technology)	
MUC	Mathemical Versus Community (description	
MVC	technology)	
MinP;	Minimum size bound for the technology of subsys-	[kW]
1	tem "i"	[]
NaS	Sodium-sulphur battery	
NiCd	Nickel-cadmium battery	
NPC	Net present costs	
ORC	Organic rankine cycle	
р	risk-neutral probability	
Pi	Installed rated (or peak) power of the technology	[kW]
	of subsystem "i"	
P _{W nom}	Rated power of the standard wind turbine	[kW]
PCM	Phase change materials	
PHS	pumped hydroelectric energy storage system	
pts	Set of all points used in diesel efficiency lineariza-	
1	tion	
PV	Photovoltaics and label of the photovoltaic subsys-	
	tem	
r	risk-free rate of return	
BES	Renewable energy sources	
RO	Reverse osmosis (desalination technology)	
ROA	Real option analysis	
SIDS	Small Island Developing States	
~2 ~2	standard deviation (in POA)	
ColorDodiction	Spacific incoming color rediction based on motor	$[1.331/m^2]$
Solarnadiation	rological data	
SOS	Special order sets (Modeling)	
SpecificOutput	Specific electrical energy output of the standard	[kWh/h]
	wind turbine	L / J
Storedel	Amount of electrical energy stored in ess' (that can	[kWh]
01	be totally released)	
Stored _{+b}	Amount of thermal energy stored in tss' (that can	[kWh]
	be totally released)	1 1
t	Set of all hours in the time-frame of the model	
TC:	Total cost of the technology of subsystem "i"	[€]
Th: :	Flux of thermal energy entering the technology of	[kWh/h]
1 m1,m	subsystem "i"	[[[[]]]]
Thi,out	Flux of thermal energy leaving the technology of	[kWh/h]
,	subsystem "i"	
TSS	Label of the thermal energy storage subsystem	
V _{wss}	Installed storage capacity of the water storage	$[m^3]$
V _{cut-in}	wind velocities, here cut-in	[m/s]
V-redox	Vanadium-redox-flow battery	L / J

var-RO	variable reverse osmosis (desalination technology)	
W	Label of the wind turbine subsystem	
Waterreserve	The amount of water stored in the water storage	$[m^3]$
	system	
WaterDemand	The daily water demand of the island under exam	$[m^3/d]$
WaterGen _{Desal}	hourly water output of the desalination system	$[m^3/d]$
WEC	Wind energy converter	
Wind1	scenario with small wind capacity	
Wind2	scenario with large wind capacity	
Wind1+PV	scenario with small wind capacity und PV systems	
WSS	Label of the water storage subsystem	
у	year	
ZnBr	zinc-bromine flow battery	
ξ	Binary variable used to trigger the mutual exclu-	
	sivity of some model variables	