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Abstract  

It has previously been suggested based on ab initio calculations that 

perovskites with the general formula of AB3X, where A and B are metals, 

and X is B, C, or N, may exhibit unique mechanical properties such as 

superior ductility, and hence damage tolerance. In the first part of this thesis, 

the mechanical behavior of ternary perovskite borides and iron based 

perovskite nitrides is explored. YPd3B, Fe4N, ZnFe3N, and PdFe3N thin 

films were synthesized by combinatorial magnetron sputtering, and the 

mechanical properties thereof were probed by nanoindentation. Generally, 

the measured elastic moduli were in good agreement with ab initio data. 

The evaluation of the critical shear stress for the onset of plasticity suggests 

that YPd3B, Fe4N, and PdFe3N can be classified as ductile materials, which 

is also consistent with the prediction from ab initio calculations.   

The second part of the work demonstrates a possible application of the 

combinatorial thin film approach for the fabrication of one-dimensional 

nanostructured materials. In-Y thin films with a compositional spread were 

deposited by combinatorial magnetron sputtering. It was found that In-

whiskers were extruded spontaneously from the film surface upon exposure 

to atmosphere. In-whisker growth was accompanied by an increase in 

oxygen content in the films. The morphology and extrusion kinetics of In-

whiskers were affected by the local chemical composition. The results 

presented here enable controlled processing of one-dimensional 

nanostructured materials with respect to morphology and growth kinetics. 
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Zusammenfassung 

Ab initio-Berechnungen von Perovskiten der allgemeinen Formel AB3X, 

wobei A und B Metalle sind und X für eines der Elemente B, C oder N steht, 

lassen auf außergewöhnliche mechanische Eigenschaften dieser 

Stoffklasse schließen, insbesondere eine hohe Duktilität und somit hohe 

Schadenstoleranz. 

Im ersten Teil dieser Arbeit wird das mechanische Verhalten ternärer, 

perovskitischer Boride und Nitride untersucht. YPd3B-, Fe4N-, ZnFe3N- und 

PdFe3N-Schichten wurden mittels kombinatorischem Magnetronsputtern 

synthetisiert und ihre mechanischen Eigenschaften mittels Nanoindentation 

bestimmt. Der Vergleich der gemessenen Werte für den Elastizitätsmodul 

zeigt eine gute Übereinstimmung mit den ab initio-Daten. Aus der Analyse 

der kritischen Scherspannung zur Aktivierung plastischer Verformung wird 

geschlossen, dass YPd3B, Fe4N und PdFe3N als duktile Werkstoffe 

einzustufen sind. Dies ist ebenfalls konsistent mit den Ergebnissen der ab 

initio-Berechnungen. 

Der zweite Teil der Arbeit befasst sich mit der Evaluierung der potentiellen 

Anwendung der kombinatorischen Dünnschichtsynthese zur Herstellung 

eindimensionaler nanostrukturierter Werkstoffe. In-Y-Dünnschichten 

wurden über einen großen Zusammensetzungsbereich mittels 

kombinatorischem Magnetronsputtern abgeschieden. Bei anschließender 

Auslagerung der Dünnschichten an Luft wurde die spontane Extrusion von 

In-Whiskern aus der der Schicht beobachtet. Das Whisker-Wachstum 

korreliert mit einem Anstieg des Sauerstoffgehalts der Schichten. Die 

Morphologie und die Wachstumskinetik der Whisker werden direkt durch 

die lokale chemische Zusammensetzung beeinflusst.  Die hier erarbeiteten 

Zusammenhänge zwischen dem Bildungsmechanismus, der 
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Wachstumskinetik und der Whiskermorphologie leisten einen Beitrag zur 

gezielten Herstellung eindimensional nanostrukturierter Werkstoffe.  
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