

Martin-Luther-Universität Halle-Wittenberg Zentrum für Ingenieurwissenschaften

Dissertation zur Erlangung des akademischen Grades Doktor-Ingenieur (Dr.-Ing.)

Quecksilberabscheidung in der nassen Rauchgasentschwefelung von Kohlekraftwerken

vorgelegt von

Dipl.-Ing. Jan Schütze geboren am 30.08.1981 in Markranstädt

Gutachter:

Prof. Dr.-Ing. Heinz Köser Prof. Dr., techn. Günter Scheffknecht

Tag der öffentlichen Verteidigung: 20.02.2013

Beiträge zum Umweltschutz

Band 6/2013

Jan Schütze

Quecksilberabscheidung in der nassen Rauchgasentschwefelung von Kohlekraftwerken

Shaker Verlag Aachen 2013

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: Halle, Univ., Diss., 2013

Copyright Shaker Verlag 2013 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8440-1897-4 ISSN 1611-8057

Shaker Verlag GmbH • Postfach 101818 • 52018 Aachen Telefon: 02407 / 95 96 - 0 • Telefax: 02407 / 95 96 - 9 Internet: www.shaker.de • E-Mail: info@shaker.de

Vorwort

Die vorliegende Dissertation entstand während meiner Tätigkeit als wissenschaftlicher Mitarbeiter an der Martin-Luther-Universität Halle-Wittenberg bzw. Otto von Guericke Universität Magdeburg im Zeitraum 2007-2012. Während dieser Zeit bearbeitete ich die VGB geförderten Projekte:

- VGB-Nr. 293 "Einfluss der Mitverbrennung quecksilberhaltiger Sekundärbrennstoffe auf die Rauchgasreinigung" und
- VGB-Nr. 313 "Optimierung der nassen Hg-Abscheidung aus Rauchgasen von Kohlekraftwerken im Fall der Co-Verbrennung quecksilberreicher Sekundärbrennstoffe"

sowie mehrere weitere Projekte in kohlegefeuerten Kraftwerken.

In diesem Zusammenhang möchte ich mich bei der VGB-Forschungsstiftung für die finanzielle Förderung und den Mitgliedern des VGB-Arbeitskreises Abgasreinigung für die hilfreichen Diskussionen danken. Ein ebensolcher Dank gebührt den zahlreichen Unterstützern im Kraftwerk, deren Mithilfe wesentlich zum Gelingen der betrieblichen Versuche beigetragen hat.

Meinen Diplomanden und Projektstudenten Sebastian Hopf, Daniel Kunth, Steffen Neumann, Paula Rieche und Sven Weißbach danke ich für die tatkräftige Unterstützung v. a. in Punkto Laborarbeit. Für die wissenschaftlichen Gespräche und Entwicklung von Theorien möchte ich neben diesen Personen speziell Prof. Dr. Heinz Köser für zahlreiche Anregungen sowie für die fachliche Betreuung dieser Arbeit einen großen Dank aussprechen.

Das kollegiale Ambiente durch die ehemaligen sowie aktuellen Mitarbeiter des Institutes für Umweltschutztechnik und die Hilfe durch die technische Werkstatt sowie Glasbläserei haben ebenso wesentlich zum Gelingen der Arbeit beigetragen.

Zu guter Letzt bedanke ich mich bei meiner Familie und meinen Freunden, die mich zur Promotionszeit stets unterstützt haben.

"Des Menschen Herz ist gleich wie Quecksilber, das jetzt da, bald anderswo ist, heute so, morgen anders gesinnt."

Martin Luther

Kurzfassung

Ein wesentlicher Beitrag zur Minderung der Quecksilber-Emissionen aus kohlegefeuerten Kraftwerken kann im Verfahrensschritt der Rauchgasentschwefelung (REA) erfolgen. In der nassen Gaswäsche wird vorwiegend die oxidierte Quecksilberspezies (Hg^{ox}) gebunden. Gleichzeitig stellt das abgeschiedene, gelöste Quecksilber (Hg_{aq}) eine Quelle für Re-Emissionen dar. Die Ursachen hierfür wurden näher untersucht. Einerseits besitzen die in Lösung befindlichen Hg-Salze einen Dampfdruck, welcher in Form der Hg^{ox} -Re-Emission unter Laborbedingungen quantifiziert und mit den technischen Gegebenheiten verglichen wurde. Andererseits wurden Nebenbestandteile der Waschsuspension als Ursache für Reduktionsreaktionen und die damit verbundene Re-Emission an elementarem Quecksilber (Hg^{el}) identifiziert.

Weitere Untersuchungen befassten sich im Labor- und Betriebsmaßstab zielgerichtet mit der Minderung der Hg-Re-Emission. Getestet wurden zunächst die Einflüsse von Betriebsparametern auf die Hg-Chemie der REA-Suspension. Konkret wurden die Parameter pH-Wert, Temperatur und Redoxpotential betrachtet. In fortführenden Versuchen wurden Additive (Komplexierungs-, Adsorptions- und sulfidische Fällmittel) zur Hg-Emissionsminderung eingesetzt. Da die sulfidische Fällung, wie auch die Adsorption, das gelöste Hg in die Feststoffphase überführt, wurden Maßnahmen zur Minimierung der Hg-Konzentration im Gips erprobt.

Abstract

The essential contribution for lowering mercury emissions from coal-fired power stations ensues in process step of flue gas desulphurization (FGD). In the wet scrubber mainly the oxidized mercury species (Hg^{ox}) is bound. At the same time the removed dissolved mercury (Hg_{aq}) is a source for re-emissions. The reasons for these purposes were checked experimentally. On the one hand dissolved Hg-salts have a vapor pressure, which got quantified as Hg^{ox} -re-emission in laboratory and compared to technical conditions. On the other hand the constituencies of scrubbing suspension were identified as a reason for reduction reactions combined with re-emissions of elemental mercury (Hg^{el}).

Additional experiments in lab and technical scale concerned the lowering of the Hg-reemission. First tests contained effects of process parameters to Hg-chemistry in FGDsuspensions. In detail, the parameters pH-level, temperature and oxidation reduction potential were considered. At continious experiments additives (for complexation, adsorption and sulfidic precipitation) were used for lowering Hg-emission. Because sulfidic precipitation and adsorption convey dissolved Hg into the solid state, methods were proved to minimize Hg-concentration of the gypsum.

Inhaltsverzeichnis

At	bildungsverzeichnis	VII
Ta	bellenverzeichnis	XIII
1	Einleitung	1
2	Grundlagen zum Quecksilber 2.1 Stoffeigenschaften	. 5 . 7 . 8
3	$\begin{tabular}{lll} \textbf{Versuchsdurchf\"{u}hrung} \\ 3.1 & Kurzzeit-W\"{a}scherversuche & & \\ 3.2 & Versuche zur Stabilität von sulfidischen F\"{a}llmitteln & \\ 3.3 & Versuche zur Hg^{el}_g-Minderung & & \\ 3.4 & Simulation der Gipswäsche und REA-Waschwasseraufbereitung & \\ 3.5 & Atlaszelltest zur Hg-Einspeicherung in Gummierungen & \\ \end{tabular}$. 19 . 20 . 20
4	Emissionsphänomenologie unterschiedlicher Hg-Spezies	23
5	Rolle der REA-Prozessparameter für Hg-Emissionen 5.1 REA-Wäschertemperatur	. 33 . 34
6	Wirkung von REA-Nebenbestandteilen auf die Hg-Emission 6.1 Metalle	. 50 . 52 . 52 . 52 . 54 . 55 . 57 . 57

7	7 Hg-Minderung mittels Komplexierung	63
	7.1 Untersuchungen an Modellsuspensionen .7.2 Untersuchungen an technischen Suspensio	
8	8 Hg-Minderung mittels sulfidischer Fällmitte	·l 70
	8.1 Untersuchungen an Modellsuspensionen .	
	8.2 Untersuchungen an technischen Suspensio	
	8.3 Untersuchungen zur Stabilität der Fällmit	
9	9 Hg-Minderung mittels Adsorption	79
	9.1 Untersuchungen zur Adsorption an Model	lsuspensionen 81
	9.2 Untersuchungen zur Adsorption an techni-	-
	9.3 Alternative Sorptionsmittel	<u> </u>
	9.3.1 Chitin und Chitosan	
	9.3.2 natürliche und synthetische Zeolith	
	9.3.3 Trockenasche als Sorbtionsmittel	
10	10 Betriebsversuche in der REA	90
	10.1 Beeinflussung von Hg-Chemie und Redox	potential
	10.1.1 Regelung von Oxidationsluftmenge	${ m e} \ { m und} \ { m L/G-Verh\"{a}ltnis} \ . \ . \ . \ . \ . \ 91$
	10.1.2 Halogeniddosierung zur Steuerung	des Redoxpotentials und der Hg-
	Emission	
	10.2 Einfluss von pH-Wert und Lastzustand .	
	10.2.1 pH-bedingte Re-Emission in der Z	weikreis-REA 105
	10.2.2 Abhängigkeit der Hg-Emission von	n Lastzustand 106
	10.3 Erfahrungen zur Minderung von Hg-Emis	sionen in Kraftwerk-REAs 107
11	11 Hg-Minderung von Gips in der REA-Abwass	
	$11.1~\mathrm{Hg\text{-}Emissionsminderung}$ in der RAA $$	
	11.2 Hg-Stabilität im Gips	
	11.3 Optimierung der RAA nach Hg-Minderun	g in der REA 119
12	12 $Hg^{el}_g ext{-}Minderung$ in REA-Suspensionen	128
13	13 Hg-Einspeicherung in REA-Gummierungen	134
	13.1 Modellexperimente zur Hg-Einspeicherung	g
	13.2 Hg-Gehalte technischer Gummiproben .	
14	14 Zusammenfassung	142
15	15 Anhang	146
	15.1 Entschwefelung im Kraftwerk	
	15.2 Fehlerbetrachtung	
	15.2.1 Fehler bei der Dampfdruckmessung	g
	15.2.2 Minderbefunde bei der Hg_{aq} -Bestin	
	15.2.3 Fehler bei der Redoxpotentialbesti	mmung 151
	15.3 Hg-Rücklösung in der RAA	
	15.3.1 H_2O_2 , OCl^- und ClO_2^- als Oxidati	
	15.3.2 Oxidation mittels Ozon	
	15.4 sonstige Abbildungen	

15.5 Tabeller	1	 											158
Literaturverzeio	hnis												178

Abbildungsverzeichnis

1.1	nach [BP, 2011] sowie der Stromerzeugung in der BRD (2011) nach [BDEW, 2012]	1
2.1	Verschiebung und Abscheidung verschiedener Hg-Spezies im Prozess der Abgasreinigung	11
3.1	Aufbau der Versuchsapparatur zur Hg-Dampfdruck-Bestimmung über REA-	
3.2	Modellwaschsuspensionen	14
	zentration von der Belüftung mittels Fritte (Porosität G2)	17
3.3	Einfluss des Volumenstroms auf die Hg_g^{ges} -Konzentration in Abhängigkeit von pH-Wert und Gipszusatz	19
3.4	Aufbau der Atlaszelle für Adsorptionsversuche der REA-Gummierung	21
4.1	Hg_{aq} -Aufstockung mit verschiedenen Hg-Spezies in die technische Suspen-	
4.2	sion KW B und KW F	24
1.2	Dampfdruck im deionisierten Wasser (T=66°C)	24
4.3 4.4	Aufstockungsverhalten von Hg-Verbindungen im deionisierten Wasser Henry-Koeffizient in Abhängigkeit der Hg $_{aq}$ -Konzentration unterschiedli-	25
4.4	cher Hg-Verbindungen	26
4.5	Wirkung des nI:n Hg_{aq} -Verhältnisses auf den Henry-Koeffizienten bei Zugabe von Hg_{aq}	27
4.6	Wirkung des nI:n Hg_{aq} -Verhältnisses auf den Henry-Koeffizienten bei Zuga-	∠ I
	be von Iodid	27
5.1	Hg-Gaskonzentration in Abhängigkeit von der Wäschertemperatur	29
5.2 5.3	Henry-Koeffizient im HgX ₂ -H ₂ O-System in Abhängigkeit von der Temperatur Henry-Koeffizient in Abhängigkeit von der Wäschertemperatur in verschie-	31
	denen technischen Suspensionen	32
5.4	Henry-Koeffizienten verschiedener REA-Absorber in Abhängigkeit des Komplexierungsverhältnisses nI:nHg _{aq}	33
5.5	Berechnetes Stabilitätsdiagramm von Hg-Spezies bei 25°C und 1 atm in	
5.6	Abhängigkeit von pH-Wert und O ₂ -Konzentration aus [Kim, 2004a] Einfluss pH-Wert auf die Hg_g -Konzentration sowie pH-bedingter Hg_g^{el} -Anteil	34
0.0	in Modellsuspensionen mit Gips D	35
5.7	Einfluss von verschiedenen Gipsqualitäten und des pH-Wertes auf den Hg_g -	97
5.8	Re-Emission sowie Hg_g^{el} -Emissionsanteil	36
	sion in technischen Suspensionen des KW F	37

5.95.10	pH-Abhängigkeit des Redoxpotentials und der Hg _{aq} -Konzentration in technischen Suspensionen des KW F	38
5.11	potential	41
5.12	Suspensionen des KW F	42 43
6.1	Stabilitätsdiagramm des Eisen-Wasser-Systems (1 M bei 25 °C) nach [Stumm, 1992]	46
6.2	Stabilitätsdiagramm des Mangan-Wasser-Systems (1M bei 25 °C) nach [WOU, 2011] sowie des Kupfer-Wasser-Systems (1 mM bei 25 °C) nach [FactSage,	
6.3	2007]	47
6.4 6.5	RSL 1	47 48
<i>c.c</i>	in RSL1	48
6.6	Hg-Bilanzierung des Versuchs mit 500 mg/l Fe(II) in der Modellsuspension bei pH 6 sowie partikelgrößenabhängige Hg-Verteilung nach [Blythe, 2011]	49
6.7	Wirkung von SeO $_2$ in den Modellsuspensionen RSL1/2 bei 60°C, pH 3-8	51
6.8	Stabilitätsdiagramm für das Se-O ₂ -H ₂ O-System bei 25°C, 1 atm	51
6.9	Auswirkungen von Sulfit auf Hg im deionisierten Wasser	52
6.10	Wirkung von Thiosulfat in Modellsuspensionen RSL1/2	54
6.11	Wirkung von Dithionit auf die Hg-Emission und Hg $_{aq}$ -Konzentration in Modellsuspensionen RSL1/2	55
6.12	Wirkung von Peroxodisulfat in der Modellsuspension RSL1	57
6.13	Chemische Umwandlungsprozesse von SN-Verbindungen nach [Gutberlet, 1996]	58
6.14	Auswirkungen von HATS, HADS und IDS auf die $\operatorname{Hg}_g^{ges}$ -Konzentration in den Modellsuspensionen RSL1/2	59
6.15	Wirkung der Oxidationsmittel auf die Hg-Re-Emission in der RSL1-Modell- suspension	60
6.16	Wirkung von Humin-, Adipin- oder Ameisensäure auf die ${\rm Hg}_g$ -Konzentration in RSL1	61
7.1	Minderung der Hg_g -Konzentration mittels Komplexierung durch EDTA oder Halogenide in RSL1	64
7.2	Minderung der Hg_g -Konzentration unter Einsatz von Cyanid-haltigen Komplexierungsmitteln in RSL1	65
7.3	Minderung der Hg_g -Konzentration mittels Komplexierung unter Einsatz	66
7.4	von gelben Blutlaugensalz, Bromid und Iodid in technischen Suspensionen Nach Gleichung 7.7 und 7.8 berechnete molare Verhältnisse nX:nHg [mol:mol] sowie abgeleitete Wirkverhältnisse der Halogenide	68
8.1	Hg-Minderung in der RSL1-Suspension mittels Pravo1, Pravo2 und Pravo3	71
8.2 8.3	Hg-Minderung in der RSL1-Suspension mittels Nalco71281 und Nalco8702 Hg-Minderung in der RSL1-Suspension mittels Natriumdimethyldithiocar-	72
5.5	bamat (NaDMDTC), EpoflocL1R und TMT15	72

8.4	Bilanzierung der Fällungsversuche mittels TMT15 (nS: nHg = 20 mol/mol) in Abhängigkeit vom pH-Wert sowie Hg-Gehalte der Feinteile und deren Verdünnung durch Gips in RSL1	3
8.5 8.6	Hg-Minderung mittels EpoflocL1R in technischen Suspensionen	
8.7	KW G und KW F	5
8.8	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
9.1	Hg_g^{ges} - und Hg_{aq} -Minderung in Abhängigkeit von der Dosierrate mittels Norit GL50 sowie Lhoist MinsorbAS in RSL1	2
9.2	Minderung der $\mathrm{Hg}_{g^{-}}$ und $\mathrm{Hg}_{aq^{-}}$ Konzentration mittels NoritGL50 und Minsorb AS in technischen Suspensionen	
9.3	Minderung der Hg_g - und Hg_{aq} -Konzentration mittels Filterasche des KW N in technischer Suspension	8
10.1	Zeitlicher Verlauf des Redoxpotentials E_H , der Hg_g^{ges} - (Betriebsmessung) und Hg_{ag} -Konzentration am Kraftwerk F	0
10.2	Wirkung des L/G-Verhältnisses (Variation der Sprühebenen und Oxidationsluftmenge) auf das Redoxpotential sowie Überblick über die Suspensionsbeprobungen am Wäscher F1	
10.3	Aufstockungsverhalten in Abhängigkeit vom Redoxpotential der Suspensionen KW F1	
10.4	Vorversuch zur Stabilität des Redoxpotentials bei Abschaltung des Oxidationsluftgebläses am KW F2	5
10.5	Verlauf des Redoxpotentials, der SO ₂ -Roh- und -Reingaskonzentration, des Kohlemassenstromes sowie des Sauerstoff-Reingas- und -Suspensionsgehaltes während der Iodid-Dosierung zur Suspension KW F2	7
10.6	Ergebnisse der Hg-Aufstockung in Suspensionsproben (rechts) und Verlauf der Hg-Suspensions-Gehalte sowie des Gipsweißgrades (links) während der	_
	Iodid-Dosierung an der REA F2	
10.8	Zeitlicher Verlauf von Redoxpotential, SO_2 -Konzentrationen, Lastzustand (Kohle), O_2 -Konzentration sowie Hg-Emission bei Bromid- und Iodiddosie-	~
10.9	rung	
10.10	OVergleich der Hg-Betriebsmessung (Durag HM 1400) mit der Hg-Speziesbestimmung (Dowex/Aktivkohle-Methode)	
10.11	Einfluss des Lastzustandes und des L/G-Verhältnisses auf die Hg-Re-Emission am Wäscher KW M	
11.1	Schaltungsvergleich RAA-Aufbau einstufig nach Stand der Technik, Steag mit nachgeschalteter Hg-Ausschleusung und E.On mit vorgeschalteter Hg-	
11.2	Ausschleusung	4
	emissionsarme Schaltung mit TMT-Dosierung vor Hydroxidfällung 11	5

11.3	Optimierte Schaltungsvariante der REA-Abwasseraufbereitung zur Hg-Ausschleusung	116
11.4	Temperaturabhängige Hg-Freisetzung am Beispiel der Gipsfraktion (Hydrozyklonunterlauf) des KW F2 in unterschiedlichen Betriebsphasen der	
11 5	Redoxfahrweise	117
	des KW F2 in unterschiedlichen Betriebsphasen	117
	des KW M in unterschiedlichen Betriebsphasen $mit(x)/ohne$ (-) Feinteilausschleusung (FTA) und $mit(x)/ohne$ (-) TMT15-Dosierung	118
11.7	Literaturangaben zu Temperaturbereichen der Verflüchtigung unterschiedlicher Hg-Verbindungen	119
11.8	Einfluss der Waschzyklen auf den Hg_s -Gehalt, den d_{10} -Korndurchmesser und den Weißgrad von Gips	121
11.9	Hg_g -Konzentration bei der Hg_{aq} -Rücklösung in Abhängigkeit von der ClO ⁻ - Dosiermenge	124
11.10	0Eignung des Redoxpotentials als Indikator zur Hg-Rücklösung an zwei technischen Suspensionen	
11.11	1Einfluss der Suspensionsmatrix auf die Hg-Rücklösung am Beispiel des durch TMT 15 gefälltem Hg_{ag}	
11.12	2Beispiel zur Optimierung der Hg-Abscheidung in der REA-Abwasseraufbereitungsanlage nach Stand der Technik	
	Hg_g^{el} -Abscheidung in technischen REA-Suspensionen des KW F bei normalen und erhöhten Redoxpotential	130
12.2	Speziesbetrachtung bei der Hg_g^{el} -Abscheidung in sauren technischen REA-Suspensionen des KW F1a	131
12.3	$\mathrm{Hg}_g^{\hat{el}}$ -Abscheidung mittels pH-bedingter Eisenfällung anhand der technischen Suspension des KW G	131
	Möglichkeiten des Korrosionsschutzes im Kraftwerk	134
13.2	pH-Abhängigkeit der Hg-Einspeicherung in Gummierung mit Kontakt zur Flüssigphase sowie Hg-Frachtabnahme nach 21 d in der Modellsuspension	196
13.3	RSL2	
13.4	und Kontaktphase nach 21 d in RSL2 bei $10\mathrm{mg/l~Hg}_{aq}$ Spezifische Adsorptionsgeschwindigkeit in Abhängigkeit von der Modell-	137
	suspension, Temperatur und Kontaktphase über die Versuchsdauer	
	Übersicht über SO_2 -Abscheideverfahren	146
	satz) der RSL1/2 Suspensionen	149
	des (vor Additivzusatz) der RSL1 Suspension, n=217	150
15.4	Messfehlerermittlung bei der Dampfdruckbestimmung des Ausgangszustandes (vor Additivzusatz) der RSL2 Suspension, n=28	150
15.5	Einfluss von Hg-Komplexbildnern auf die Hg $_{aq}$ -Bestimmung mit SnCl $_2$ -Aufschluss (2,5 Ma% SnCl $_2$, 1,2 M HCl als Reduktionsvorlage)	151
15.6	Simulation des CO ₂ -Einflusses auf den pH-Wert am Beispiel der REA-Waschsuspensionen aus dem KW D sowie der RSL1-Suspension	

15.7 Vergleich unterschiedlicher Redoxsonden während des Transportzeitraums
von Probenahme bis Versuchsbeginn im Labor
15.8 Rücklösung von gefälltem Hg mittels $\mathrm{H_2O_2}$ (links pH 7,8, rechts pH<2) 153
15.9 Rücklösung des abgeschiedenem Hg am Unterlauf des Hydrozyklons im KW
F4 mittels H_2O_2 -Zugabe
$15.10 \mathrm{R\"{u}ckl\"{o}sung}$ des gefälltem Hg im Oberlauf des Hydrozyklons mittels Ca(OCl) $_2$
$15.11 \mathrm{R\"{u}ckl\"{o}sung}$ des abgeschiedenem Hg mittels ClO $^-$ in technischen Suspen
sionen
15.12 Rücklösung des abgeschiedenem Hg mittels $Ca(OCl)_2$ in Suspension des
Hydrozyklonoberlaufs im KW E
$15.13 \mathrm{R\"{u}ckl\"{o}sung}$ des abgeschiedenem Hg mittels gestufter $\mathrm{NaClO}_2\text{-}\mathrm{Zugabe}$ in
der sauren Gipswaschlösung (pH 3) des KW F
15.14Hg-Rücklösung sowie Redoxspannung in Abhängigkeit des Ozoneintrags in
die Suspension des KW N
15.15Aufbau und Schaltung der REA samt Nebenanlagen (ohne DeNOx-Kataly-
sator) nach [Kneissel, 1989]
$15.16 \mathrm{Stabilit"atsdiagramme}$ des Hg-OH-Cl-Systems in der Flüssigphase (0,5 mM
$=100~\mathrm{mg/l~Hg_{aq}})~\mathrm{aus}~\mathrm{[Kim,~2004b]}~\ldots$
15.17Stabilitätsdiagramme des Hg-SO ₄ -Systems in der Flüssigphase (0,5 = 100
$mg/l \ mM \ Hg_{aq}$) aus [Kim, 2004b]

Tabellenverzeichnis

2.1	schiedener Quecksilberverbindungen bei 25°C	4
2.3	stände für Hg-Verbindungen in [Å]	5 8
2.4	Geschätzter, europäischer Hg-Verbrauch im Jahr 2007 nach [Europa, 2008]	9
2.5	Weltweiter jährlicher Hg-Abbau in [t/a]	9
2.6 2.7	Weltweite natürliche und anthropogene Hg-Emissionen $[t/a]$	10 11
3.1	Chemische Zusammensetzung der Modellsuspension sowie bedeutende Parameter technischer Behauspensionen	15
3.2	rameter technischer Rohsuspensionen	19
3.3	3300 DV)	16
	Gleichgewichtes, errechnete Hg-Konzentrationen an den Betriebspunkten $\dot{V}=1$ l/h und $\dot{V}=200$ l/h sowie deren Quotient $K_{eq}=Hg_{V=1l/h}^{ges}/Hg_{V=200l/h}^{total}$.	19
4.1	mittlere Henry-Koeffizienten unterschiedlicher Hg-Verbindungen bei 60° C (333 K) aus den Versuchen der Abbildung 4.4	26
5.1	Konstanten zur Ermittlung des temperaturabhängigen Henry-Koeffizienten unter Einbeziehung der Komplexierung nach [Kanefke, 2008]	30
5.2	Konstanten zur Berechnung des Henry-Koeffizienten nach Abbildung 5.2	
5.3	und Gleichung 5.3	31
5.4	Koeffizienten aus Abbildung 4.4 sowie Literaturdaten für 60°C Konstanten zur Berechnung der Henry-Koeffizienten (nach Gleichung 5.3 für die Suspensionen KW N aus Abbildung 5.3) sowie der berechnete Henry-	32
5.5	Koeffizient für 60°C	32 41
6.1	Wirkung von nullwertigem Eisen und Kupfer auf Hg_g - und Hg_{aq} -Gehalte	50
6.2	in RSL1	50
6.3	10 mg/l	52
	pH-Bereiche	53

6.4	Hg_g^{ges} - und Hg_{aq} -Quotienten für die Versuche mit Antischaummittel Anti-	56 62
7.1	Stabilitätskonstanten ausgewählter Hg-Verbindungen nach [Lidin, 1995] bei $25^{\circ}\mathrm{C}$	63
7.2	Konstanten zur Berechnung der Hg-Minderung durch Komplexierung nach	67
7.3	Vergleich des nach Gleichung 7.10 ermittelten Komplexierungsgrades mit	68
8.1	pH-Abhängigkeit der Hg-Minderung in RSL1 am Beispiel von Pravo2 mit nS: nHg = 6 mol/mol (36 mg/l Pravo2)	71
8.2	Oxidations- (nS:nHg=20, RSL1-Suspension) und pH-Wert-Stabilität (für reversible Flockung in RSL2-Lösung) von an-/organischen sulfidischen Fäll-	
	mitteln	76
9.1 9.2	Vergleich der prozentualen Hg-Minderung unterschiedlicher Aktivkohlequalitäten bzw. Herdofenkoks (HOK) in der Modellsuspension (jeweils 250 mg/l	80
9.3	Hg-Feststoffbelastung durch die Sorbentien MinsorbAS und Norit GL50 in	81
9.4	_	83 85
9.5 9.6	Hg_{aq} -Minderung und Adsorptionskapazität während des Langzeitversuches mit RSL1-Suspension (2 g/l Adsorptionsmittel, pH 6, 20°C, 150 g/l Gips C) Übersicht über Eigenschaften und Wirkung der untersuchten natürlichen	85
9.7		86
9.8		87
		88
	, , ,	91 91
	Analyseergebnisse der Suspensionsproben des Hauptwäschers F1 zum Groß-	91
	1	93
		94
10.5	Analyseergebnisse der Suspensionsproben hinsichtlich AOX-, Dithionat-, Peroxodisulfat sowie Halogenid-Konzentrationen während des Iodid-Dosierver-	
		98
10.6	Übersicht zum Verlauf der Halogeniddosierung und Umfang der Probenahme 1	
10.7	$AOX,Halogenid\text{-},Dithionat\text{-}undPeroxodisulfatkonzentrationenw\ddot{a}hrend/$	
100	nach der Bromid- und Iodiddosierung an der REA F2	
	Hg-Gehalte in den Tagesmischproben von Kohle und Flugasche 10	IJ5
10.9	Hg-Gehalte in den Gipsproben verschiedener Gipshydrozyklonunterläufe (vor Gipsband; nicht gewaschener Gips)	0.5
10.10	OVergleich der Wäscherkenndaten von zwei Zwei-Kreis-Wäschern inklusive	<i>-</i> 0
	Standardabweichung	06

10.11	l Verbrauchskosten für die sulfidische Fällung in der REA und das Flugstromverfahren mit Aktivkohle	109
10.12	2Kostenübersicht für sulfidische Fällmittel- und Aktivkohledosierung zur	100
	Steinkohle-REA auf Basis von [van Dijen, 2008]	110
	lek, 2011	110
10.14	4Vor- und Nachteile der beiden Redoxfahrweisen des REA-Wäschers	
	Kriterien der Gipsqualität nach [Demmich, 2010]	112
	reitung nach [AbwV, 1997]	113
11.4	wasseraufbereitung aus neun Messkampagnen von [Meij, 2006] Hg-Gips- und Schlammkonzentration nach Zugabe von $1\mathrm{mg/l}$ Hg $_{aq}$ und unterschiedlichen Additiven zur Suspension KW F7 (Gipswäsche mit 8,31	119
11.5	Wasser/kg Gips)	
11.6	sionen durch Oxidationsmittel	
11.7	vor in RSL 2 mit KruseTN gefälltem 1 mg/l ${\rm Hg}_{aq}$ Kenndaten der Hg-Rücklösung durch Oxidationsmittel	
	Maximale Hg_g^{el} -Minderung in Vorversuchen zum Einfluss des pH-Wertes und der Suspensionsmatrix	
12.2	Einsatz von Additiven zur Hg_g^{el} -Minderung	129
13.1	Übersicht zu Desorptionsversuchen der RSL 1, 1mg/l Hg $_{aq}$, pH 3 mittels Gips C-haltiger RSL1-Suspension	138
13.2	Hg-Gehalte technischer Gummierungen	
15.1	Standardabweichungen und Detektionsgrenzen für einzelne Komponenten der Versuchsapparatur bzw. zugehörige Analysen	1/18
15.2	Mittlerer Standardfehler in Abhängigkeit vom Probetyp am Lumex RA 915+/Pyro-System	
15.3	Physikalische, chemische und toxikologische Eigenschaften der eingesetzten	
15.4	Additive zur Hg-Minderung - Teil 1	199
	Additive zur Hg-Minderung - Teil 2	160
15.5	Physikalische, chemische und toxikologische Eigenschaften der eingesetzten Additive zur Hg-Minderung - Teil 3	161

Abkürzungs-, Formel- und Symbolverzeichnis

Abkürzungen:

ACGIH Industrial Hygiene, Environmental, Occupational Health

AK Aktivkohle

B3PW91 Strukturberechnungsmethode nach Perdew/Wang

BAT Best Available Techique

BAT Biologischer Arbeitsplatz Toleranzwert

ber. berechnet

BIIR Bromine-Isobutylene-Isoprene-Rubber

BImSchG Bundesimmissionsschutzgesetz
BImSchV Bundesimmssionsschutzverordnung

BK Braunkohle
BRef BAT Reference
BW Blindwert

CSB Chemischer Sauerstoffbedarf ENBT E.On New Build & Technology EQ Equilibrium (Gleichgewicht)

FHM Flockungshilfsmittel
FTA Feinteilausschleusung
FT-HZ Feinteil-Hydrozyklon
Gips-HZ Gips-Hydrozyklon

HD-SCR High Dust Selective Catalytic Reduction

HOK Herdofenkoks HW Hauptwäscher

HZ-UL Hydrozyklon-Unterlauf

K Kompressorluft
KaSu Kalksteinsuspension
KG Komplexierungsgrad

KW Kraftwerk

LCP Large Combustion Plants

LD-SCR Low Dust Selective Catalytic Reduction

LUVO Luftvorwärmer

MAK Maximale Arbeitsplatzkonzentration

MATS Mercury Air Toxic Standards

n.a. nicht angegeben

nat. natürlich

NDS Natriumdisulfit $(Na_2S_2O_5)$

NIOSH National Institute for Occupational Safety and Health

O Oxidationsluft
oL ohne Oxidationsluft
OM Oxidationsmittel

org. organisch

oSCR ohne SCR-Katalysator

p.A. per Analysis (reinste Qualität) PEL Permissible Exposure Limit

PTWI Provisional Tolerable Weekly Intake REL Recommended Exposure Limit RSL REA-Standard-Lösung

RWA =RAA Rauchgasentschwefelungs-Waschwasser-Aufbereitungsanlage

SCR Selective Catalytic Reduction SEG Schwefeldioxid-Emissions-Gradient

SK Steinkohle syn. synthetisch

TA Technische Anleitung
TDI Tolerable Daily Intake
TLV Threshold Limit Value

UNEP United Nations Environment Programme

WHO World Health Organisation

VW Vorwäscher WV Wirkverhältnis

chemische Verbindungen:

 Br^- Bromid Cl^- Chlorid ClO^- Hypochlorit ClO_2^- Chlorit CN^- Cyanid

 CO_3^{2-} Carbonat Fe Eisen

 H^+ Wasserstoff-Ion

HADS Hydroxylamindisulfonsäure HATS Hydroxylamintrisulfonsäure

Hg Quecksilber

 Hg_{aq} gelöstes Quecksilber

 $Hg_g^{e\hat{l}}$ gasförmiges, elementares Quecksilber Hg_g^{ox} gasförmiges, oxidiertes Quecksilber Hg_s feststoffgebundenes Quecksilber

 Hg_{sus} in Suspension vorliegendes Quecksilber (inklusive Hg_{aq})

 HO_2 · Hydrogenperoxid-Radikal HO_2^- Hydrogenperoxid-Ion HO_3 · Hydrogenozonid-Radikal

 H_2O Wasser

 H_2O_2 Wasserstoffperoxid

 I^- Iodid

IDS Immidodisulfonsäure

 IO_3^- Iodat

 $K_4(Fe(CN)_6)$ Kaliumhexacyanoferrat(II)

 $\begin{array}{ll}
\text{Mn} & \text{Mangan} \\
O_2 & \text{Sauerstoff}
\end{array}$

 $\cdot O_2^-$ Superoxid-Ion-Radikal

 O_3 Ozon

 $\begin{array}{ll} \cdot O_3^- & \text{Ozonid-Ion-Radikal} \\ OH^- & \text{Hydroxid-Ion} \\ \cdot OH & \text{Hydroxyl-Radikal} \end{array}$

SCN^-	Thiocyanat
Se	Selen
SO_3^{2-}	Sulfit
SO_4^{2-}	Sulfat
SO_{5}^{2-}	Peroxomonosulfat
$S_2O_3^{2-}$	Thiosulfat
$S_2O_4^{2-}$	Dithionit
$S_2O_5^{2-}$	Disulfit
$S_2O_6^{2-}$	Dithionat
$S_2O_8^{2-}$	Peroxodisulfat
TMT	Tri-mercapto-S-triazin, Trinatriumsal z $\mathrm{C_{3}N_{3}S_{3}Na_{3}}$

Symbole und Formelzeichen:

Konzentration [mg/m³] c Halogenidkonzentration [g/l] c_{X^-} d_N Nenndurchmesser [m] Redoxpotential bezogen auf Wasserstoffnormalelektrode \mathbf{E}_{H} $k_{H,cp}$ Henry-Koeffizient [/] Konstante zur Bestimmung des Konzentrationsgleichgewichtes [/] K_{eq} Anzahl KG Komplexierungsgrad [%] Sättigungsdampfdruck [Pa] p_d Umgebungsdruck =101 325 [Pa] \mathbf{p}_u \mathbb{R}^2 Bestimmtheitsmaß Gaskonstante Wasserdampf = $461 \, [J/(kg \cdot)]$ R_d Gaskonstante feuchte Luft [J/(kg·K)] R_f R_g Gaskonstante trockene Luft = $287,058 \, [J/(kg \cdot K)]$ Τ Temperatur [K] \dot{V} Volumenstrom [l/h] WV Wirkverhältnis [/] Messwert \mathbf{x}_i $\bar{\bar{\mathbf{x}}}$ Mittelwert ϑ Temperatur [°C] relative Luftfeuchte φ_{rel} spezifische Dichte Gas [kg/l] ϱ_g spezifische Dichte Flüssigkeit [kg/l] ϱ_L Standardabweichung σ Oberflächenspannung σ_{sp}