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ABSTRACT

The common envelope (CE) interaction is a still poorly understood, yet criti-
cal phase of evolution in binary systems that is responsible for several astrophysical
classes and phenomena. In this thesis, we use various approaches and techniques to
investigate different aspects of this interaction, and compare our models to observa-
tions.

We start with a semi-empirical analysis of post-CE systems to predict the outcome
of a CE interaction. Using detailed stellar evolutionary models, we revise the o equa-
tion and calculate the ejection efficiency, a, both from observations and simulations
consistently. We find a possible anti-correlation between a and the secondary-to-
primary mass ratio, suggesting that the response of the donor star might be important
for the envelope ejection.

Secondly, we present a survey of three-dimensional hydrodynamical simulations
of the CE evolution using two different numerical techniques, and find very good

agreement overall. However, most of the envelope of the donor is still bound at the
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end of the simulations and the final orbital separations are larger than the ones of
young observed post-CE systems.

Despite these two investigations, questions remain about the nature of the extra
mechanism required to eject the envelope. In order to study the dynamical response of
the donor, we perform one-dimensional stellar evolution simulations of stars evolving
with mass loss rates from 1072 up to a few Mg /yr. For mass-losing giant stars, the
evolution is dynamical and not adiabatic, and we find no significant radius increase
in any case.

Finally, we investigate whether the substellar companions recently observed in
close orbits around evolved stars could have survived the CE interaction, and whether
they might have been more massive prior to their engulfment. Using an analytical pre-
scription for the disruption of gravitationally bound objects by ram pressure stripping,
we find that the Earth-mass planets around KIC 05807616 could be the remnants of
a Jovian-mass planet, and that the other substellar objects are unlikely to have lost

significant mass during the CE interaction.
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