Modeling Close Stellar Interactions Using Numerical and Analytical Techniques

by

Jean-Claude Passy B.Sc., University of Orsay, 2005 Diplôme d'ingénieur, Ecole Nationale de Techniques Avancées, 2008 M.Sc., University of Orsay, 2009

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in the Department of Physics and Astronomy

© Jean-Claude Passy, 2013 University of Victoria

All rights reserved. This dissertation may not be reproduced in whole or in part, by photocopying or other means, without the permission of the author.

Modeling Close Stellar Interactions Using Numerical and Analytical Techniques

by

Jean-Claude Passy B.Sc., University of Orsay, 2005 Diplôme d'ingénieur, Ecole Nationale de Techniques Avancées, 2008 M.Sc., University of Orsay, 2009

Supervisory Committee	
Dr. Falk Herwig, Co-supervisor (Department of Physics and Astronomy, University of Victoria)	
Dr. Orsola De Marco, Co-supervisor (Department of Physics and Astronomy, University of Victoria)	
Dr. Julio F. Navarro, Departmental Member (Department of Physics and Astronomy, University of Victoria)	

Dr. Reinhard Illner, Outside Member

(Department of Mathematics, University of Victoria)

Berichte aus der Astronomie

Jean-Claude Passy

Modeling Close Stellar Interactions Using Numerical and Analytical Techniques

Shaker Verlag Aachen 2013

Bibliographic information published by the Deutsche Nationalbibliothek The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliographic detailed bibliographic data are excluded in the Internet at

Nationalbibliografie; detailed bibliographic data are available in the Internet at http://dnb.d-nb.de.

Zugl.: University of Victoria, Diss., 2013

Copyright Shaker Verlag 2013

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the publishers.

Printed in Germany.

ISBN 978-3-8440-1851-6 ISSN 0947-7756

Shaker Verlag GmbH • P.O. BOX 101818 • D-52018 Aachen Phone: 0049/2407/9596-0 • Telefax: 0049/2407/9596-9

Internet: www.shaker.de • e-mail: info@shaker.de

Supervisory Committee

Dr. Falk Herwig, Co-supervisor

(Department of Physics and Astronomy, University of Victoria)

Dr. Orsola De Marco, Co-supervisor

(Department of Physics and Astronomy, University of Victoria)

Dr. Julio F. Navarro, Departmental Member

(Department of Physics and Astronomy, University of Victoria)

Dr. Reinhard Illner, Outside Member

(Department of Mathematics, University of Victoria)

ABSTRACT

The common envelope (CE) interaction is a still poorly understood, yet critical phase of evolution in binary systems that is responsible for several astrophysical classes and phenomena. In this thesis, we use various approaches and techniques to investigate different aspects of this interaction, and compare our models to observations.

We start with a semi-empirical analysis of post-CE systems to predict the outcome of a CE interaction. Using detailed stellar evolutionary models, we revise the α equation and calculate the ejection efficiency, α , both from observations and simulations consistently. We find a possible anti-correlation between α and the secondary-to-primary mass ratio, suggesting that the response of the donor star might be important for the envelope ejection.

Secondly, we present a survey of three-dimensional hydrodynamical simulations of the CE evolution using two different numerical techniques, and find very good agreement overall. However, most of the envelope of the donor is still bound at the end of the simulations and the final orbital separations are larger than the ones of young observed post-CE systems.

Despite these two investigations, questions remain about the nature of the extra mechanism required to eject the envelope. In order to study the dynamical response of the donor, we perform one-dimensional stellar evolution simulations of stars evolving with mass loss rates from 10^{-3} up to a few M_{\odot}/yr . For mass-losing giant stars, the evolution is dynamical and not adiabatic, and we find no significant radius increase in any case.

Finally, we investigate whether the substellar companions recently observed in close orbits around evolved stars could have survived the CE interaction, and whether they might have been more massive prior to their engulfment. Using an analytical prescription for the disruption of gravitationally bound objects by ram pressure stripping, we find that the Earth-mass planets around KIC 05807616 could be the remnants of a Jovian-mass planet, and that the other substellar objects are unlikely to have lost significant mass during the CE interaction.

Contents

Sι	iperv	visory	Committee	ii
A	bstra	ct		iii
Ta	able o	of Con	tents	\mathbf{v}
Li	st of	Table	s	x
Li	st of	Figur	es	xi
C	o-aut	horshi	(p	xiv
A	cknov	wledge	ements	$\mathbf{x}\mathbf{v}$
D	edica	tion		xvii
1	Intr	oduct	ion	1
	1.1	Motiv	ations	2
	1.2	Stellar	r evolution of single stars	8
		1.2.1	The governing equations	8
		1.2.2	The Virial theorem	9
		1.2.3	Timescales	10
		1.2.4	Complete Evolution	11
		1.2.5	Classification	16
	1.3	Binari	ity	17
		1.3.1	Methods of detection	18
		1.3.2	The Roche analysis	20
		1.3.3	Roche lobe overflow	21
	1.4	Comn	non envelope evolution	22
			The onset of the common envelope evolution	23

		1.4.2	The physics of the common envelope evolution	23
		1.4.3	Remaining questions	24
	1.5	Thesis	outline	25
		1.5.1	Chapter 2: On the α -formalism for the	
			Common Envelope Interaction	25
		1.5.2	Chapter 3: Hydrodynamics Simulations of the	
			Common Envelope Phase	26
		1.5.3	Chapter 4: The Response of Giant Stars	
			To Dynamical-Timescale Mass Loss	26
		1.5.4	Chapter 5: The Common Envelope Phase	
			with Planetary Companions	26
		1.5.5	Chapter 6: Summary and Conclusions	27
		1.5.6	Appendix A: The binary fraction of planetary nebula central	
			stars. I. A high-precision, $I\text{-}\mathrm{band}$ excess search	27
		1.5.7	Appendix B: A Well-Posed Kelvin-Helmholtz	
			Instability Test and Comparison	27
2	On	the o	formalism for the Common Envelope Interaction	28
_	2.1		formalism for the Common Envelope Interaction uction	29
	2.1			30
	2.2	2.2.1	equation	30
		2.2.1	The α -formalism in the literature	33
		2.2.2		34
		2.2.3	The core envelope boundary and the value of) for different	54
		2.2.4	The core-envelope boundary and the value of λ for different	36
		2.2.5	stellar models and evolutionary stages	38
	2.3		etermination of α using simulations and observations	
	2.5	2.3.1	The pre-CE giant reconstruction technique \dots	42 42
		2.3.1	Observed systems used in the	42
		2.3.2	·	50
		2.3.3	determination of α	50
		2.5.5		۲n
		0.9.4	determination of α	52
	0.4	2.3.4	Results	57
	2.4		tellar response and the thermal energy	60
	2.5	Summ	ary and discussion	62

		2.5.1	al. (2010)	6
3	Hyd	drodyn	namics Simulations of the Common Envelope Phase	6
	3.1	Introd	luction	(
	3.2	The c	odes	-
		3.2.1	Eulerian vs Lagrangian codes	,
		3.2.2	Input physics	,
		3.2.3	The <i>Enzo</i> code	,
		3.2.4	The SNSPH code	,
		3.2.5	Resolution comparison	,
	3.3	The si	imulations	,
	3.4	Result	ts	ě
		3.4.1	Description of the rapid infall phase	
		3.4.2	Code comparison	
		3.4.3	The impact of initial conditions	
		3.4.4	Gravitational vs Hydrodynamic drag	
	3.5	Discus	ssion	
		3.5.1	Comparison of simulations and observations	
		3.5.2	Reproducing the observations	
	3.6	Summ	nary	1
4	The	Resp	onse of Giant Stars To Dynamical-Timescale Mass Loss	1
	4.1	Introd	luction	1
	4.2	Nume	rical method	1
	4.3	The si	imulations	1
	4.4	Low-n	nass zero age main sequence stars	1
	4.5	Giant	stars	1
		4.5.1	The canonical case of a 0.89 M_{\odot} red giant branch star	1
		4.5.2	Additional models	1
	4.6	Summ	nary and Discussion	1
5	The	Com	mon Envelope Phase with Planetary Companions	1
	5.1	On th	e survival of brown dwarfs and planets engulfed by their giant	
		host s	tar	1
		5.1.1	Introduction	1

		5.1.2	Analysis	129
		5.1.3	Results	132
		5.1.4	Summary	137
	5.2	Simula	ating the common envelope interaction	
		with s	ubstellar companions	141
		5.2.1	Introduction	141
		5.2.2	Self-gravity	141
		5.2.3	The different Poisson solvers in Enzo	143
		5.2.4	Testing the different Poisson solvers	147
6	Sun	ımary	and Conclusions	156
	6.1	The co	ommon envelope interaction: what's new?	156
	6.2	Prospe	ects	158
		6.2.1	Reproducing the observations	158
		6.2.2	Different systems and regimes	160
		6.2.3	Predicting and explaining future observations $\ \ldots \ \ldots \ \ldots$	161
A	The	binar	y fraction of planetary nebula central stars	
	I. A	high-	precision, I-band excess search	164
	A.1	Introd	uction	164
	A.2		ample	166
	A.3	Obser	vations and Data Reduction	167
	A.4		etermination of the photometric magnitudes and uncertainties .	168
	A.5		detection technique by red and IR excess flux	173
	A.6	Result	is	178
	A.7	Comp	arison of the overall PN binary fraction with the overall main	
		sequer	nce binary fraction	183
		A.7.1	Accounting for completion effects	183
		A.7.2	The debiased PN binary fraction and its uncertainties	185
		A.7.3	Comparison of the short-period PN binary fraction with the	
			main sequence binary fraction	186
		A.7.4	Comparison of the PN binary fraction with the white dwarf	
			binary fraction	187
	A.8	Conclu	usions and discussion	187
В	A V	Vell-Po	osed Kelvin-Helmholtz Instability Test and Comparison	190

B.1	${\bf Introduction}\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\$	190
B.2	Setup	191
B.3	Codes	193
B.4	Analysis	195
B.5	Results	196
B.6	Discussion	200
B.7	Secondary Instabilities	201
B.8	Conclusions	205
D'1 1'	1	200
Bibliog	graphy	206

List of Tables

Table 1.1	Timescales	1
Table 2.1	Error on the virial theorem	3
Table 2.2	Different criteria for the core-envelope boundary	36
Table 2.3	Values of λ for different RGB and AGB models	40
Table 2.4	Parameters of our post-CE systems	5
Table 2.5	Values of α of our post-CE systems	5^{2}
Table 2.6	Statistical properties of the fit $\log q$ vs. $\log\alpha$	58
Table 3.1	Main parameters for the different simulations	78
Table 3.2	Amount of the envelope mass still bound at the end of the $S\!NS\!PH$	
	simulations	9'
Table 4.1	The main parameters for the simulations $\dots \dots \dots$	11
Table 5.1	Orbital parameters	139
Table 5.2	Parameters of the different companion models investigated $\ \ldots \ \ldots$	140
Table A.1	The photometric magnitudes of our targets	172
Table A.2	$I\text{-}\mathrm{band}$ excess, and companion magnitude and spectral type	178
Table A.3	$J\mbox{-}{\rm band}$ excess, and companion magnitude and spectral type $$	179
Table B.1	Simulation Prefixes and Codes	195

List of Figures

1.1	Cataclysmic variables	3
1.2	Population synthesis with different α	6
1.3	A sample of planetary nebulae	7
1.4	HR diagram for a range of masses, $Z=0.01$	15
1.5	Classification of stars by mass	16
1.6	Contours of the Roche potential	21
1.7	Stellar radius vs core mass for a range of masses, $Z=0.01$	22
2.1	Stellar structure of 2 M_{\odot} RGB and AGB stars	37
2.2	Values of λ and best fit for different RGB and AGB models $\ \ .$	41
2.3	Comparison between different initial-to-final mass relations	44
2.4	Determination of the primary's initial mass for our post-CE systems	44
2.5	Derivation of the main sequence mass for A 63 and V471 Tau $\ \ldots \ \ldots$	48
2.6	Evolutionary tracks for different masses	51
2.7	Values of α as a function of M_1 , M_2 and P	56
2.8	Values of α as a function of q	63
3.1	Different potentials used in the simulations	75
3.2	Resolution comparison between the SNSPH and Enzo simulations	76
3.3	Comparison of the initial conditions via selected profiles $\ \ldots \ \ldots$	79
3.4	Orbital separation for the 256^3 Enzo simulations	81
3.5	Orbital evolution for the Enzo7 simulation	82
3.6	Density cuts at different times for the Enzo7 simulations	83
3.7	Evolution of the companion velocity for the Enzo7 simulation $\ . \ . \ .$	84
3.8	Conservation of angular momentum for the SPH2 simulation	85
3.9	Conservation of energy for the SPH2 simulation	87
3.10	Initial distribution of the unbound mass for the SPH2 simulation $$	88
3.11	Comparison of the separation for the 0.6 M_{\odot} companion	89
3.12	Comparison of the mass components for the 0.6 M_{\odot} companion	90

3.13	Comparison of density profiles for the 0.6 M_{\odot} companion	91
3.14	Impact of initial conditions	93
3.15	Final orbital separations for the different simulations $\dots \dots$.	95
3.16	Distribution of observed post-CE systems	96
3.17	Comparison of the separations from observations and simulations $$. $$.	98
3.18	Evolution of different mass components for the SPH2 simulations $$	99
3.19	Final state of the extended envelope for the SPH2 simulation $\ \ .$	100
4.1	Local thermal timescale and entropy for a ZAMS and a RGB star $$.	113
4.2	Evolution of the radius for the ZAMS models	114
4.3	Evolution of the mass and the mass loss rates for the RGB models $$.	116
4.4	Evolution of the radius for the RGB models	117
4.5	Ratio of the different accelerations for the RGB models	118
4.6	Evolution of the entropy profiles for different mass loss rates	119
4.7	Evolution of the radius profiles static and dynamic evolutions $\ \ . \ \ . \ \ .$	121
4.8	Profiles in the $\rho-T$ diagram for model 8	122
4.9	Early evolution of the entropy profiles for model 8	123
4.10	Evolution of the radius for the AGB models	124
4.11	Evolution of the radius for the 5 M_{\odot} RGB models	125
5.1	Density profiles of the substellar companions	133
5.2	Density profiles of the progenitors	134
5.3	The multigrid solver	146
5.4	The APM solver	146
5.5	The TestOrbit problem	148
5.6	The GravityTest problem	150
5.7	The SineWaveTest problem	152
5.8	The SineWaveTest problem	153
5.9	Initial conditions for an AMR simulation	155
6.1	Ballistic timescale of the fall back disk	162
6.2	Test with a 10 M_{Jup} companion	163
A.1	Fits to the standard stars	170
A.2	The spectral type of the companion from the I and J band excess	176
A.3	V-I and $V-J$ colors of the targets	177
A.4	Comparison with Bilíková et al. (2012)	182

В.1	Initial conditions for the KHI test					192
B.2	Convergence study with the Pencil code $\ \ldots \ \ldots$					197
В.3	Maximum y -direction kinetic energy in all codes					198
B.4	Density at resolution 512^2 and time $t = 1.5$ in all codes					199
B.5	Density in Athena at time $t = 3.0$ at three resolutions					202
B.6	Density in Athena at time $t = 3.2$ at three resolutions					203

CO-AUTHORSHIP

The published work in this thesis is contained in Chapter 2 through Chapter 5, and Appendices A and B. At the start of each of these chapters and appendices, I have indicated whether the work presented within is a reprint or a draft based on a paper already published.

The project and articles were developed in collaboration with my supervisors Orsola De Marco and Falk Herwig, and Mordecai-Mark Mac Low.

In addition to writing parts of Chapter 2, I performed the analytical calculations and fits presented in Section 2.2, as well as the stellar evolution calculations for the determination of α . Orsola De Marco, Falk Herwig and I developed the reconstruction technique described in Section 2.3.

Chapter 3 was written entirely by me. I carried out the Enzo simulations, and analyzed the Enzo and the SNSPH simulations. The SNSPH simulations were performed by Chris L. Fryer and Steven Diehl.

I carried out and analyzed all the simulations presented in Chapter 4, and wrote the entire paper.

In addition to writing most of Chapter 5, I developed the different formalisms and performed the simulations presented in Section 5.1. The work presented in Section 5.2 is the result of an ongoing collaboration with Greg L. Bryan (Columbia University).

The observations used in Appendix A were acquired in November 2008 by Orsola De Marco and Maxwell Moe. I reduced and analyzed the data obtained during these 8 nights. I determined the photometric magnitudes and uncertainties of the targets, standard and reference stars (Section A.4).

I performed the Enzo simulations presented in Appendix B, and wrote a small part of the paper.

ACKNOWLEDGEMENTS

As my "second mother" likes to say, a PhD is a journey during which the student is supposed to mature as a scientist and a person. Without the help and support of countless people, my journey would not have been a success. I shall here try to thank everyone who matter to me, and without whom none of this work would have been possible.

First of all, I would like to express my gratitude to my supervisors Orsola De Marco, Falk Herwig, and Mordecai-Mark Mac Low. Their passion for science, their knowledge and their kindness have been essential. I have learned a lot from them and the freedom they gave me allowed me to develop the critical thinking and confidence that are necessary to pursue such a career successfully. I am also grateful to the other members of my supervisory committee, Julio F. Navarro and Reinhard Illner, and to my external examiner, Alison Sills, for their helpful questions and feedback that improved this manuscript. I am thankful to the various collaborators I had the opportunity to work with, in particular Chris L. Fryer, Gabriel Rockefeller, Greg L. Bryan, Bill Paxton (not the actor), George H. Jacoby, David J. Frew, and Colin P. McNally.

I feel very fortunate to have been able to complete my PhD at two amazing institutions: the American Museum of Natural History in New York City, and the University of Victoria. I have become very attached to these two places and consider them now as my "homes."

For team AMNH, I would like to thank:

- our department administrator Gwen King, for her kindness and her help throughout the years;
- Colin P. McNally, for helpful discussions, fun times, and for his flowers and his state-of-the-art 3D visualization toolkit;
- Kelle Cruz, for her friendship;
- Matt Wilde and David Zurek, for good discussions (sometimes about science) and too many sports games watched at the bar or at our desks.

For team UVic, I am grateful to:

• Jolene Bales, Amanda Bluck, Monica Lee, and Michelle Shen, for helping me to solve my numerous administrative issues:

- the Star Talk group, for many interesting discussions;
- Don Vandenberg, for being such an inspiring man and scientist;
- The UVic astrograds, in particular my officemates Azadeh Fattahi, Sheona Urquhart, Chris Barber, Chris Bildfell and Razzi Movassaghi, for making office 403 the best office in the entire department;
- Chris Bildfell, for sometimes letting me beat him at basketball;
- Masen Lamb, for being himself;
- Razzi Movassaghi, for being the best worst friend I have ever had;
- Yasser Hajivalizadeh, for checking his emails once per month;
- Hannah Broekhoven-Fiene and Charli Sakari, for proof-reading my thesis, being great mock-committee members, playing pranks on me, being there for me, etc... In a word, for being true friends;

Finally, I would like to give my greatest thanks to:

- my high school teacher Emmanuel Lesueur, for helping me to go through the difficult times of adolescence, as well as my college physics teacher Mr. Massias, for passing on his love for physics and science;
- George H. Jacoby, for being not only a great collaborator and mentor, but also
 a close friend, for going grocery shopping with me in Tucson on Senior Discount
 Day, and almost fighting a sweaty guy in Sydney with me;
- Shamsky B. M. for showing me the path. I am still two behind, but I am getting there;
- my brother Pierre-Luc Passy, for offering me a stunning framed picture taken by Apollo 11. And also for being a great brother;
- Ja-Mei, whose love and understanding have been unwavering since the day I
 met her. I am thankful for everything she has given me, and feel very fortunate
 to have her in my life.

I am forever indebted to my parents, for the love, support and guidance they provided me since I was born. I could not have done this without them.

DEDICATION

To my parents, with love.