Otto-von-Guericke-Universität Magdeburg

Konzepte für Agile
 Qualitätssicherung und -bewertung in Wartungs- und
 Weiterentwicklungs-Projekten

Dissertation

zur Erlangung des akademischen Grades
Doktoringenieur (Dr.-Ing.)
angenommen durch die Fakultät für Informatik
der Otto-von-Guericke-Universität Magdeburg
von: Dipl. Informationswirt André Janus
geb. am 28. Juli 1979 in Hannover
Gutachter: Prof. Dr. Reiner Dumke
Prof. Dr. Andreas Schmietendorf
Prof. Dr. Martin Gaedke
Prof. Dr. Hans-Knud Arndt

Magdeburger Schriften zum Empirischen Software Engineering

André Janus

Konzepte für Agile Qualitätssicherung und -bewertung in Wartungs- und Weiterentwicklungs-Projekten

Shaker Verlag
Aachen 2013

Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: Magdeburg, Univ., Diss., 2012

Copyright Shaker Verlag 2013
Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8440-1578-2
ISSN 1618-7946
Shaker Verlag GmbH • Postfach 101818 • 52018 Aachen
Telefon: 02407 / 95 96-0 • Telefax: 02407 / 9596-9
Internet: www.shaker.de • E-Mail: info@shaker.de

Zusammenfassung

In dieser Arbeit werden Konzepte für eine Agile Qualitätssicherung und -bewertung in Wartungs- und Weiterentwicklungs-Projekten vorgestellt. Die Agile SoftwareEntwicklung ist ein Trend, der sich in der Software-Industrie immer mehr durchsetzt. Zu einer professionellen Software-Entwicklung gehört aber auch eine Qualitätssicherung, sowie die Möglichkeit die Qualität von Software und auch der Software-Entwicklung selbst zu bewerten. Die in dieser Arbeit entwickelten Konzepte gehen besonders auf die in der Praxis häufig zu findenden Wartungs- und Weiterentwicklungs-Projekte ein. Da diese Arbeit einem industriellen Kontext entstammt, wurden die Konzepte auch in einem industriellen Wartungs- und Weiterentwicklungs-Projekt evaluiert.
Nach einer kurzen Einführung in den Forschungskontext in Kapitel I werden ebenfalls knapp in Kapitel II die Grundlagen der Agilen Software-Entwicklung sowie der Software-Qualität dargestellt. In Kapitel III werden die Anforderungen an eine Agile Qualitätssicherung und -bewertung gestellt, an denen die vorhandenen Forschungsansätze aus dem Kontext Agile SoftwareEntwicklung/Qualitätssicherung und -bewertung/Wartung und Weiterentwicklung in Kapitel IV gemessen werden. In Kapitel V werden schließlich die für diese Arbeit neu entwickelten Modelle und Methoden vorgestellt:

- Das Agile Software Development Model (ASDM) ist eine Modell zur formalen Charakterisierung von Agilen Vorgehensmodellen und Prozessen.
- Das Agile Maturity Model Integration (AMMI) bewertet die Güte Agiler Prozesse anhand der Qualitätssichernden Eigenschaften der einzelnen Agilen Praktiken.
- Der 3C-Ansatz (Continuous Integration, Measurement and Improvement) ist eine Methode zum Software-Controlling und zur Qualitätssicherung in Agilen Entwicklungsprozessen.

In Kapitel VI werden die Modelle und Methoden in Bezug auf ein industrielles Wartungs- und Weiterentwicklungs-Projekt evaluiert. Im Kapitel VII werden die Ergebnisse zusammengefasst und Schlussfolgerungen gezogen sowie ein Ausblick auf noch zu erforschende Sachverhalte gegeben.

Diese Arbeit zeigt Zusammenhänge von Qualitätseigenschaften der Software und Software-Entwicklung und den Konzepten der Agilen Software-Entwicklung. Obwohl die Agile Software-Entwicklung selbst keine klassische Qualitätssicherung kennt, werden deren Ansätze in den entwickelten Modellen und Methoden mit denen der Agilen Software-Entwicklung kombiniert und entsprechend angepasst, so dass im Ergebnis eine "Agile Qualitätssicherung" entworfen wird. Die Anwendbarkeit wird durch den Einsatz in einem Industrieprojekt empirisch belegt. Agile Qualitätssicherung trägt zu einem ingenieurmäßigen Vorgehen in der SoftwareEntwicklung bei und ist ein weiterer Schritt in Richtung Industrialisierung der Software-Entwicklung.

Danke!

Während der Entstehung dieser Arbeit habe ich von vielen Seiten Unterstützung erhalten und möchte mich dafür herzlich bedanken!

Mein Dank geht vor allem an meinen Betreuer Prof. Dr. Reiner R. Dumke, von der Arbeitsgruppe Softwaretechnik am Institut für Verteilte Systeme (IVS). Trotz der räumlichen Distanz betreute er mich vorbildlich, gab mir in Telefonaten und Diskussionen wichtige Hinweise und Tipps und lenkte meine Forschungsarbeit damit in die richtigen Bahnen. Gleichzeitig hatte ich die Freiheit meine eigenen Ansätze zu entwickeln und auszubauen. Mit seiner Hilfe konnte ich meine in der Industrie gewonnenen Erkenntnisse in den richtigen Forschungskontext bringen und der wissenschaftlichen Öffentlichkeit vorstellen. Ich danke auch den anderen Mitarbeitern der Arbeitsgruppe, die ich auf Konferenzen und Aufenthalten in Magdeburg kennenlernen durfte.
Mein Dank geht ebenfalls an meine Gutachter Prof. Dr. Andreas Schmietendorf und Prof. Dr. Martin Gaedke, vor allem für die gute Zusammenarbeit bei gemeinsamen Publikationen und die Begutachtung meiner Dissertation.
Ein großer Dank geht auch an die Mitarbeiter der Firma T-Systems, Bereich Systems Integration, im Projektverbund I2 und besonders dem Projekt IBIS, in dem mir über mehrere Jahre die Möglichkeit gegeben wurde, meine tägliche Projektarbeit mit wissenschaftlicher Forschung zu verknüpfen. Meine Erkenntnisse aus der Arbeit in den Projekten bilden die wesentlichen Grundlagen für meine in dieser Arbeit entwickelten Ansätze. Gleichzeitig hatte ich die Möglichkeit meine Modelle und Methoden mit Daten aus der Industrie und im industriellen Einsatz zu erproben und zu überprüfen. Einige möchte ich hier besonders hervorheben: Jens Jäger und Christoph Nowak für gemeinsame Publikationen und die "Batman Lamp", Ralf Klemmer für das inhaltliche Korrekturlesen dieser Arbeit, Markus Leutner für die "Erfindung" von I2, Annette Lötzbeyer und Christian Syrbe für die angenehme Arbeitsatmosphäre im Büro Karlsruhe und gemeinsame Mittagessen, Tobias Deppe, Lilly Breithaupt, Sascha Janke und Dr. Ingrid Pfleiderer für die organisatorische Einbindung meiner Forschungsarbeit in die tägliche Projektarbeit.

Vor allem danke ich auch meiner Frau Erika für ihre Unterstützung und ihr Verständnis während der Promotionszeit, in der ich mehr als einmal Nächte und Wochenenden am Schreibtisch verbracht habe. Sie hat mich stets motiviert, wenn die Arbeit einmal ins Stocken geriet, sowie diese Arbeit nach Rechtschreib- und Formatierungsfehlern Korrektur gelesen. Ich danke auch meinen Eltern Ingelore und Gérard, sowie meiner Schwester Simone und meinen Großeltern Erna und Otto, die mich während der ganzen Zeit bestärkt haben, meinen Weg (weiter) zu gehen.

Inhaltsverzeichnis

Abbildungsverzeichnis viii
Tabellenverzeichnis X
Abkürzungsverzeichnis xi
I Einleitung 1
1.1 Hintergrund und Kontext 1
1.2 Problematik 2
1.3 Fragestellungen 2
1.4 Stand der Forschung. 3
1.5 Ziel der Forschungsarbeit 4
1.6 Nutzen und Relevanz 4
1.7 Methodologie und Vorgehen 4
1.8 Struktur der Arbeit 5
1.9 Zusammenfassung 6
II Grundlagen 7
1 Klassische Software-Entwicklung 7
1.1 Software-Produkt 7
1.2 Software-Entwicklungsressourcen 9
1.3 Software-Entwicklungsprozess 11
1.4 Software-Anwendung 12
1.5 Software-Lebenszyklus 14
1.5.1 Lebenszyklen und Phasen 14
1.5.2 Lebenszyklus-Prozesse und Ergebnisse der ISO 12207 15
1.5.3 Wartung und Weiterentwicklung im Software-Lebenszyklus 15
1.6 Klassischen Vorgehens- und Lebenszyklusmodelle 16
1.6.1 Sequentielle Modelle 16
1.6.2 Nicht-sequentielle Modelle 16
2 Agile Software-Entwicklung 17
2.1 Zentrale Begriffe in der Agilen Software-Entwicklung 17
2.2 Das Agile Manifest 18
2.2.1 Die Werte des Agilen Manifests 18
2.2.2 Die Prinzipien des Agilen Manifests 18
2.3 Agile Praktiken 19
2.4 Agiler Prozess 20
2.5 Agile Kernkonzepte 21
2.6 Grundannahmen in der Agilen Software-Entwicklung 22
2.6.1 Änderung von Anforderungen 22
2.6.2 Qualität als fixe Größe 23
2.7 Agile Vorgehensmodelle 25
2.7.1 eXtreme Programming (XP) 26
2.7.2 Scrum 31
2.7.3 Weitere Agile Vorgehensmodelle 34
a Feature Driven Development (FDD) 34
b Crysta 34
3 Qualitätssicherung und -bewertung 35
3.1 Der Qualitätsbegriff in der Software-Entwicklung 35
3.2 Qualitätssichten 36
3.3 Qualitätsmerkmale 36
3.4 Qualitätsdimensionen 37
3.4.1 Produktqualität. 37
3.4.2 Prozessqualität 37
3.4.3 Ressourcenqualität 38
3.4.4 Formale Darstellung der Qualitätsdimensionen 38
3.5 Software-Messung 38
3.5.1 Messergebnis 38
3.5.2 Messziele 39
3.5.3 Messprozess 39
3.6 Ausgewählte Metriken und Verfahren 40
3.6.1 Lines of Code (LOC) 40
3.6.2 Zyklomatische Komplexität (McCabe) 40
3.6.3 CK-Metrics Suite 41
3.6.4 Capability Maturity Model Integration (CMMI) 41
3.7 Softwarequalitätsmanagement (SQM) 42
3.7.1 Analytische Qualitätssicherung 43
3.7.2 Konstruktive Qualitätssicherung 43
3.7.3 Organisatorische Qualitätssicherung 43
3.7.4 Total Quality Management (TQM) 43
3.7.5 Verifikation und Validierung 44
3.7.6 Testen 45
3.7.7 Formale Darstellung des Softwarequalitätsmanagement (SQM) 47
4 Wartung und Weiterentwicklung 47
4.1 Software-Wartung 48
4.1.1 Arten der Wartung 48
4.1.2 Durchführung der Wartung 50
4.1.3 Spezielle Wartungsaktivitäten 50
4.1.4 Wartbarkeit 51
4.2 Weiterentwicklung von Software (Evolution) 51
5 Zusammenfassung. 52
III Anforderungen an eine Agile Qualitätssicherung und -bewertung 53
1 Anforderungen durch die Agile Software-Entwicklung 53
1.1 Berücksichtigung von Agilen Kernkonzepten 54
1.1.1 Berücksichtigung und Unterstützung der Grundannahmen 54
1.1.2 Berücksichtigung von Werten und Prinzipien 54
1.2 Bezug auf Agile Praktiken 54
1.3 Berücksichtigung des Agilen Prozesses 54
1.4 Formalisierte Zusammenfassung 55
2 Anforderungen aus Sicht der Qualitätssicherung und -bewertung 55
2.1 Berücksichtigung von Qualitätssichten, -merkmalen und -dimensionen 56
2.2 Empirisches Vorgehen - messbare Qualität 56
2.3 Software-Qualitätsmanagement (SQM) 57
2.4 Formalisierte Zusammenfassung 57
3 Anforderungen durch den Kontext Wartung und Weiterentwicklung 57
3.1 Berücksichtigung von Wartungsaktivitäten 58
3.2 Berücksichtigung von Weiterentwicklungsaktivitäten 58
3.3 Formalisierte Zusammenfassung 58
4 Spezifische Anforderungen an Modelle und Methoden 58
4.1 Modelle zur Qualitätsbewertung 58
4.1.1 Vergleichbarkeit. 58
4.1.2 Ganzheitliche Betrachtung 59
4.2 Methoden zur Qualitätssicherung 59
4.2.1 Operationalisierbarkeit 59
4.3 Formalisierte Zusammenfassung 59
5 Bewertung anhand der Anforderungen 60
6 Zusammenfassung 62
IV Gegenwärtige Ansätze zur Agilen Qualitätssicherung und -bewertung 63
1 Allgemeine Ansätze aus dem Bereich Agilität und Empirie 63
1.1 Empirische Forschungen in der Agilen Entwicklung 63
1.2 Empirische Untersuchungsergebnisse von Agilen Methoden 65
1.3 Eine vergleichende Analyse von Agilen Methoden 66
2 Allgemeine Ansätze aus dem Bereich Agilität und Qualität 69
2.1 ISO 9001 und Agile Software-Entwicklung 69
2.2 Agile Softwarequalitätssicherung 69
2.3 Qualität im Agilen Umfeld 70
2.4 Agility Measurement Index. 71
2.5 Qualitätssicherung in der Agilen Software-Entwicklung 72
2.6 Die Rolle der Softwarequalität in XP 73
2.7 Die Rolle von Rückmeldungen und Anpassung in der Agilen Entwicklung 74
2.8 Bewertung von Agilität 75
3 Spezielle Ansätze im Bereich Agile Praktiken und Qualität 76
3.1 Erfahrungen mit Pair Programming in einem Agilen Projekt 76
3.2 Ein strukturiertes Experiment mit Test-getriebener Entwicklung (TDD) 77
3.3 Qualitätseffekte von Test-getriebener Entwicklung (TDD) 77
3.4 Erkennung von und Reaktion auf "Bad Smells" in XP 79
4 Spezielle Ansätze im Bereich Agilität und Prozessqualität 81
4.1 XP aus CMM-Sicht 81
4.2 Reifegradmodell XPMM 82
4.3 Einschränkungen Agiler Prozesse 83
4.4 Softwareprozessmetriken und Agile Methoden 84
4.5 Agile Maturity Model (AMM) 85
4.6 Ein iterativer Verbesserungsprozess für Agile Software-Entwicklung. 87
5 Spezielle Ansätze im Bereich Agilität und Produktqualität 87
5.1 Agile Qualitätssicherung 88
5.2 Messung von Testqualität durch Code-Metriken 89
5.3 Die Entwicklung von OO-Qualitätsmetriken in Agilen Projekten 90
6 Spezielle Ansätze im Bereich Agilität und Software-Messung 90
6.1 Ein Framework zur Bewertung von XP 90
6.2 Software-Metriken für Agile Software-Entwicklung 92
6.3 Eine empirische Studie zu Stabilitätsmetriken und dem QMOOD Modell. 92
6.4 Passende Agile Messkonzepte 94
6.5 Bedeutung der Softwaremessung bei Agilen Projektparadigmen 95
7 Spezielle Ansätze im Bereich Agilität in Wartung und Weiterentwicklung 96
7.1 Der Beitrag der Agilen Software-Entwicklung zur Weiterentwicklung 96
7.2 Agile Software-Entwicklung und Software-Wartung 97
7.3 Agile Software-Entwicklung für große fragile Bestands-Anwendungen 97
7.4 Agile Weiterentwicklung zur Verbesserung von Bestandssoftware 99
7.5 Agile Ansätze für die Software-Wartung 100
7.6 eXtreme Programming (XP) in der Software-Wartung 100
7.7 Ein Agiler Prozess in Wartung und Weiterentwicklung 101
8 Zusammenfassung. 102
V Neue Ansätze zur Agilen Qualitätssicherung und -bewertung 105
1 Agile Software Development Model (ASDM) 105
1.1 Zielsetzung des Modells. 107
1.2 Vorgehen zur Entwicklung des Modells. 109
1.3 Die Basis-Konzepte des ASDM 112
1.4 Beziehungen zwischen den Basiskonzepten 113
1.5 Vollständigkeit der Modell-Instantiierung 113
1.6 eXtreme Programming (XP) im ASDM 115
1.7 Scrum im ASDM 116
1.8 Herausforderungen 118
1.9 Zusammenfassung 118
2 Agile Maturity Model Integration (AMMI) 119
2.1 Qualitätssichten und -dimensionen Agiler Praktiken 119
2.2 Der Reifegrad Agiler Entwicklungsmethoden und Vorgehensmodelle 122
2.3 Reifegrad (Level) 1 - iterative \& incremental 123
2.4 Reifegrad (Level) 2 - 3-Dim. Practices 124
2.5 Reifegrad (Level) 3 - 2-Dim. Practices 124
2.6 Reifegrad (Level) 4-1-Dim. Practices 125
2.7 Reifegrad (Level) 5 - Adapting Practices 125
2.8 Herausforderungen 126
2.9 Zusammenfassung 127
3 Continuous Integration, Cont. Measurement, Cont. Improvement (3C) 127
3.1 Geeignete Metriken für (interne) Software-Qualität im 3C 127
3.1.1 Geeignete klassische Metriken für den 3C-Ansatz 128
3.1.2 Geeignete Agile Metriken für den 3C-Ansatz 129
a Tests 129
b Test-Growth-Ratio 129
c Test-Coverage 130
d Broken Builds 130
3.2 Der 3C-Ansatz 133
3.2.1 Schritt 1 - Continuous Integration 133
3.2.2 Schritt 2 - Continuous Measurement 134
3.2.3 Schritt 3 - Continuous Improvement. 137
3.3 Herausforderungen 139
3.4 Zusammenfassung 139
VI Validation der neuen Ansätze zur Agilen Qualitätssicherung und -bewertung 140
1 Das Agile Vorgehensmodell I2 140
1.1 Entwicklungs- und Releasezyklen 141
1.2 Konfigurationsmanagement 142
1.3 Multi Stage Environment 143
1.4 Anforderungs-, Planungs- und Fehlermanagement 143
1.5 Zusammenfassung 144
2 Anwendung der Modelle und Methoden in I2 144
2.1 I2 und ASDM. 144
2.1.1 I2-Abbildung im ASDM. 144
a Werte und Prinzipien. 144
b Praktiken 145
c Rollen 145
d Artefakte. 145
e Prozess. 145
f Substitute 145
g Beziehungen 147
2.1.2 Ergebnisse. 147
2.2 I2 und AMMI. 148
2.2.1 Umfrage zu Agilen Praktiken. 148
2.2.2 Ergebnisse. 149
2.3 I 2 und 3 C 152
2.3.1 Wartung und Weiterentwicklung in I2 152
2.3.2 Typisierung von Java-Generics. 153
2.3.3 Ergebnisse 153
2.4 Zusammenfassung 153
3 Prüfung der Modelle und Methoden gegen die Anforderungen 153
3.1 ASDM. 154
3.2 AMMI 157
3.3 3C 160
3.4 Zusammenfassung. 163
VII Zusammenfassung und Ausblick. 164
1.1 Zusammenfassung. 164
1.1.1 Fazit ASDM. 164
1.1.2 Fazit AMMI. 165
1.1.3 Fazit 3C. 165
1.2 Ergebnisse. 165
1.2.1 Agile Qualitätsbewertung 166
1.2.2 Agile Qualitätssicherung 166
1.2.3 Kontext Wartung und Weiterentwicklung. 166
1.2.4 Qualitätseigenschaften Agiler Software-Entwicklung. 167
1.2.5 Schlussfolgerungen 167
1.3 Ausblick. 167
1.3.1 Weiterentwicklung der Modelle und Methoden 167
1.3.2 Weitere Forschungsfragen. 168
Literaturverzeichnis 169
Anhang 1 - Extreme Feedback Device: "The Batman Lamp". 176

Abbildungsverzeichnis

Abb. 1 - Struktur der Arbeit. 6
Abb. 2 - Software-Produkt (aus [Dumke2005]) 9
Abb. 3 - Software-Ressourcen (aus [Dumke2005]) 10
Abb. 4 - Software-Prozess (aus [Dumke2005]) 12
Abb. 5 - Software-Anwendung (aus [Dumke2005]) 13
Abb. 6 - Software-Lebenszyklus-Phasen (angelehnt an [Dumke2003]) 14
Abb. 7 - Lebenszyklus-Prozesse und Ergebnisse der ISO 12207 15
Abb. 8 - Werte, Prinzipien und Praktiken (basierend auf [Abrahamsson2005] 20
Abb. 9 - Typischer Agiler Prozess (mit Agilen Praktiken) 21
Abb. 10 - Änderung der Anforderungen (aus [iteratec2012]) 22
Abb. 11 - Cost of Change (aus [Beck1999_2]) 23
Abb. 12 - Das Magische Quadrat - klassische Sicht. 24
Abb. 13 - Das Magische Quadrat - Agile Sicht 25
Abb. 14 - Werte, Prinzipien und Praktiken in Agilen Methoden 26
Abb. 15 - Funktionsumfang und Technische Schulden (basierend auf [Fowler2000]) 28
Abb. 16-eXtreme Programming (XP) in der Übersicht (aus [Beck1999_2]). 29
Abb. 17 - eXtreme Programming (XP) Lebenszyklus (aus [Wells2006]). 30
Abb. 18 - eXtreme Programming (XP) - Praktiken, Rollen und Artefakte 30
Abb. 19 - Burndown-Chart des I2-Projekts IUCCA [Koto2012] 33
Abb. 20 - Scrum - Praktiken, Rollen und Artefakte 33
Abb. 21 - Phasenmodell im FDD (aus [ITAgile2012]) 34
Abb. 22 - Qualitätsmerkmale des SW-Produkts nach ISO 25000 (aus [ISO25000_2012]). 37
Abb. 23 - Goal-Question-Metric (aus [GQM2012]) 39
Abb. 24 - Messprozess nach ISO 15939 (aus [Dumke2003]) 40
Abb. 25 - QS-Varianten 43
Abb. 26 - Anwendung der QS-Varianten 44
Abb. 27 - Verifikation und Validierung in den Entwicklungs-Phasen (aus [Dumke2003]). 45
Abb. 28 - Software-Wartung (aus [Dumke2005]) 50
Abb. 29 - Software-Qualität im Kontext dieser Arbeit 52
Abb. 30 - Anforderungen durch die Agile Software-Entwicklung 53
Abb. 31 - Anforderungen aus Sicht der Software-Qualität 56
Abb. 32 - Anforderungen durch Wartung und Weiterentwicklung 57
Abb. 33 - Anforderungen an Modelle und Methoden 59
Abb. 34 -Zusammenfassung der Anforderungen. 62
Abb. 35 - Evolutionäre Entwicklung Agiler Methoden (aus [Abrahamsson2003]) 67
Abb. 36 - Mapping von XP Praktiken auf CMM Prozessgebiete 82
Abb. 37 - Zuordnung von XP Praktiken zu XPMM Reifegraden. 83
Abb. 38 - Agile Maturity Model (AMM) (aus [Patel2009]) 86
Abb. 39 - Begriffe von XP und Scrum gegenübergestellt 106
Abb. 40 - Vergleich von Begriffen in XP und Scrum 107
Abb. 41 - Charakterisierung und Vergleichbarkeit von XP und Scrum 108
Abb. 42 - Gemeinsam Eigenschaften und Basis-Konzepte 108
Abb. 43 - Basiskonzepte des Agilen Manifests 112
Abb. 44 - Basiskonzepte des ASDM 113
Abb. 45 - Basiskonzepte des XP 116
Abb. 46 - Basiskonzepte von Scrum 118
Abb. 47 - Explizite und implizite Basiskonzepte des ASDM 119
Abb. 48 - Agile Maturity Model Integration (AMMI) 123
Abb. 49 - Level 1 123
Abb. 50 - Level 2 124
Abb. 51 - Level 3 124
Abb. 52 - Level 4 125
Abb. 53 - Level 5 125
Abb. 54 - Zuordnung Agiler Praktiken zu Qualitäts-Dimensionen 126
Abb. 55 - Metriken im Tool Sonar 128
Abb. 56 - Test-Coverage im Tool Cobertura 130
Abb. 57 - Broken Builds im Tool CruiseControl 132
Abb. 58-Continuous Integration (blau umrahmt) 134
Abb. 59 - Continuous Measurement (blau umrahmt) 135
Abb. 60 - Cockpit - Darstellung der Messergebnisse 136
Abb. 61 - Vorgehen bei GQM (aus [GQM2012]) 138
Abb. 62 - Continuous Improvement (blau umrahmt) 138
Abb. 63-12-Praktiken (aus [Leutner2001]) 141
Abb. 64 - I2-Entwicklungs- und Releasezyklen (aus [Leutner2001]) 142
Abb. 65-12-Konfigurationsmanagement (aus [Leutner2001]). 142
Abb. 66 - I2-Multi Stage Environment (aus [Leutner2001]) 143
Abb. 67 - Basiskonzepte von 12 147
Abb. 68 - Rollen der Befragten im Projekt 149
Abb. 69 - Testing 150
Abb. 70-Continuous Integration 150
Abb. 71 - Retrospektive 151
Abb. 72 - Zusammenfassung der Arbeit 164
Abb. 73 - Kontext der entwickelten Modelle und Methoden 166
Abb. 74 - IP-fähige Steckerleiste 176
Abb. 75 -Lampe 1 176
Abb. 76 - Lampe 2 177
Abb. 77 - Symbol des Quality Managers an der Büro-Decke 177
Abb. 78 - Piktogramm des Quality Managers 177

Tabellenverzeichnis

Tab. 1 - Tabelle der Bewertungssymbole 60
Tab. 2 - Tabelle der Anforderungen 61
Tab. 3 - Research Methods 63
Tab. 4 - Type of Agile Method and Studies 64
Tab. 5 - Topics and Paper 64
Tab. 6 - Maturity of Research 65
Tab. 7 - Goals for Research 65
Tab. 8 - Zusammenfassung der Ergebnisse 68
Tab. 9 - Industrielle Fallstudien 78
Tab. 10 - Fallstudien aus der akademischen Forschung 79
Tab. 11 - "Bad Smells" 81
Tab. 12 - Zusammenfassende Bewertung der Ansätze 1-2. 103
Tab. 13 - Zusammenfassende Bewertung der Ansätze 2-2 104
Tab. 14 - Die Werte des Agilen Manifests 109
Tab. 15 - Agile Praktiken und Qualitätssichten und -dimensionen 121
Tab. 16 - Vergleich Agiler Reifegrad- und Bewertungsmodelle 152
Tab. 17 - Anforderungserfüllung durch ASDM 156
Tab. 18 - Anforderungserfüllung durch AMMI 159
Tab. 19 - Anforderungserfüllung durch 3 C 162

AbkürZungsverzeichnis	
3C	Continuous Integration, Continuous Measurement, Continuous
Improvement	
AMMI	Agile Maturity Model Integration
ASDM	Agile Software Development Model
CI	Continuous Integration
CK	Chidamber \& Kemere (Metriken/Metricsuite)
CMM(I)	Capability Maturity Model (Integration)
DeTo	Deployment Tool
EAI	Enterprise Application Integration
FDD	Feature-Driven-Development
GQM	Goal-Question-Metric
GUI	Graphical User Interface
I2	Industrialisierte Iteration
IBIS	Internet-Based Buyback Information System
IUCCA	Intranet-Based Used Car Center Application
INT	Integration
JSP	Java Server Pages
KoTo	KontierungsTool
LOC	Lines of Code
PROD	Produktion
Q-Gate	Quality-Gate
QA	Quality Assurance
QS	Qualitätssicherung
ShaRM	SharedRequirementsManagement
SQM	Softwarequalitätsmanagement
SVN	Subversion
SW	Software
TDD	Test-Driven-Development Quality Management
TQM	Version-Control-System
VCS	eXtreme Programming
XP	

