Forschungsberichte Elektrische Antriebstechnik und Aktorik

Band 11

Johannes Klötzl

Stabilität automobiler Leistungsbordnetze

Shaker Verlag Aachen 2012

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: München, Univ. der Bundeswehr, Diss., 2012

Copyright Shaker Verlag 2012 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8440-1359-7 ISSN 1863-0707

Shaker Verlag GmbH • Postfach 101818 • 52018 Aachen Telefon: 02407 / 95 96 - 0 • Telefax: 02407 / 95 96 - 9 Internet: www.shaker.de • E-Mail: info@shaker.de

Kurzfassung

Die vorliegende Arbeit befasst sich mit zahlreichen Aspekten der Stabilität automobiler Energiebordnetze. Nach einer kurzen Begriffsklärung werden ein Überblick über Komponenten und Topologien sowie ein Ausblick auf aktuelle Fragestellungen und Entwicklungstrends heutiger Energiebordnetze gegeben. Im Weiteren werden unterschiedliche Aspekte der Bordnetzstabilität aufgezeigt und klar definiert. Aus diesen Definitionen werden für die technische sowie die optische Bordnetzstabilität Bewertungsindikatoren abgeleitet, die eine quantitative Bewertung bzw. einen objektiven Vergleich der Bordnetzstabilität ermöglichen. Für die mechanische Bordnetzstabilität wird an einem kurzem Beispiel ein mögliches Vorgehen zu Bewertung und Vergleich erläutert.

Anschließend werden die Anforderungen an einen Prüfstand zu Bordnetzstabilitätsuntersuchungen dargestellt und daraus ein Konzept abgeleitet. Die praktische Umsetzung dieses Prüfstandskonzeptes wird detailliert beschrieben. Die Leistungsfähigkeit des Prüfstandes wird hinsichtlich der Möglichkeit zur Verbraucherüberlagerung sowie der Reproduzierbarkeit untersucht. Durch den Vergleich mit Fahrzeugmessungen wird die Genauigkeit der Bordnetznachbildung am Prüfstand verdeutlicht.

Aus der zuvor aufgestellten Definition werden Maßnahmen zur Steigerung der Bordnetzstabilität abgeleitet. Diese werden in Maßnahmen mit und ohne Erweiterung der Bordnetztopologie unterteilt. Einige der Maßnahmen ohne Erweiterungen werden am Prüfstand umgesetzt und mittels der hergeleiteten Stabilitätsindikatoren bewertet. Das Gesamtpotential dieser Maßnahmen im Rahmen eines möglichen Leistungsmanagements wird aufgezeigt, bevor zwei Maßnahmen mit Bordnetzerweiterung näher betrachtet werden. Eine batterieserielle, teilgeregelte Stabilisierungstopologie wird in ihrem Wirkprinzip erläutert und vereinfacht umgesetzt. Anschließend wird eine batterieparallele, vollgeregelte Topologie in ihrem Konzept beschrieben, grob ausgelegt und simulativ untersucht. Das Konzept wird danach praktisch aufgebaut, vermessen und in seiner wesentlichen Funktion verifiziert. In

Kurzfassung

Summe wird nahezu die gesamte Bandbreite an möglichen Stabilisierungsmaßnahmen beleuchtet.

Danksagung

Mein Dank gilt Herrn Prof. Dieter Gerling für die exzellente Betreuung dieser Arbeit, die stete Rückendeckung, die Unterstützung bei allen Ideen und Vorhaben und sein großes Vertrauen. Ebenso möchte ich Herrn Prof. Bernard Bäker für das Interesse an meiner Arbeit und die Übernahme des Koreferats, sowie Herrn Prof. Gerhard Bauch für die Übernahme des Vorsitzes danken.

Danken möchte ich auch meinen Eltern für den unerschütterlichen Glauben an meine Fähigkeiten sowie deren Förderung und für ihre Geduld. Diese Arbeit ist Euch gewidmet. Ein großer Dank gilt auch meiner Frau Beate für ihre Überzeugungsarbeit diese Arbeit zu beginnen und den großzügigen Verzicht auf manch eigenen Wunsch. Ein Dankeschön gilt auch meiner Schwester Bettina für das Korrekturlesen der Arbeit in stressigen Zeiten.

Herzlich bedanken möchte ich mich bei allen Mitarbeitern des Lehrstuhls für elektrische Antriebstechnik sowie der FEAAM GmbH für eine tolle Zeit, anregende Gespräche und das geduldige Ertragen der einen oder anderen Laune. Besonders herausheben möchte ich hier Dr.-Ing. Hans-Joachim Köbler für das Abnehmen vieler organisatorischer Aufgaben und das Bekanntmachen mit der wunderbaren Welt des Brauwesens, Dr.-Ing. Benno Lange für das Teilen seiner schier unerschöpflichen Erfahrung und das Schaffen einer grandiosen Laborinfrastruktur, Dr.-Ing. Harald Hofmann für seine nicht enden wollende Hilfsbereitschaft sowie Dipl.-Ing. Klaus Mühlbauer für den steten Gedankenaustausch, die Umsetzung vieler gemeinsamer Projekte und jede Menge Spaß.

Ein großer Dank gilt auch dem industriellen Projektpartner der das Entstehen dieser Arbeit erst ermöglicht hat, vor allem aber seinen Mitarbeitern die stets großes Vertrauen in und Interesse an meiner Arbeit gezeigt haben und immer stark für die Förderung des Projektes gekämpft haben, hier aber nicht namentlich genannt werden wollen.

Ein Dankeschön auch allen Studenten, die durch ihre Hilfstätigkeiten und Abschlussarbeiten zum Erfolg dieser Arbeit beigetragen haben. Besonders zu nennen sind hier Dipl.-Ing. Eva Knischourek, M.Sc. Stefan Quadrat,

Danksagung

M.Sc. Jan Richnow, M.Sc. Tobias Rudkowski und M.Sc. Christian Schmitt, von denen ich selbst sehr viel lernen konnte.

Inhaltsverzeichnis

Inhaltsverzeichnis

1	Pro	oblemstellung und Motivation1							
2	Во	rdnetz	netz3						
	2.1	.1 Begriffsklärung							
	2.2	Aufb	ufbau						
	2.2	.1 K	Komponenten	4					
	2	.2.1.1	Bereitstellung elektrischer Energie	4					
	2	.2.1.2	Speicherung elektrischer Energie	7					
	2	.2.1.3	Verteilung elektrischer Energie	12					
	2	.2.1.4	Wandlung elektrischer Energie	14					
	2	.2.1.5	Verwendung elektrischer Energie	15					
	2.2	.2 T	opologien	17					
	2.3	Aktu	elle Entwicklungstrends	18					
	2.3	.1 F	Höherspannungsbordnetze	19					
	2.3	.2 N	Nehrspannungsbordnetze	21					
	2.3	.3 N	Mehrquellenbordnetze	22					
3	Sta	bilität		25					
	3.1	Begri	iffsklärung	25					
	3.2	Prob	lemdarstellung	26					
	3.3	Tech	nische Stabilität	28					
	3.3	.1 E	Definition technischer Stabilität	29					
	3.3	.2 N	Nöglichkeiten zur Steigerung der Bordnetzstabilität	30					
	3.3	.3 В	ewertung technischer Stabilität	31					
	3.4		sche Stabilität						
	3.4	.1 E	Definition optischer Stabilität	37					
	3.4	.2 B	Sewertung optischer Stabilität	38					

Inhaltsverzeichnis

	3.5 Me		chanische Stabilität	43
	3	3.5.1.	1 Definition mechanischer Stabilität	44
	3	3.5.1.	2 Bewertung mechanischer Stabilität	44
4	Pr	üfsta	nd für Bordnetzstabilitätsuntersuchungen	47
	4.1	Not	twendigkeit und Anforderungen	47
	4.2	Kor	nzept	48
	4.3	Au	fbau	50
	4.3	3.1	Allgemein	50
	4.3	3.2	Komponenten	52
	4	4.3.2.	1 Batterie und Generator	52
	4	4.3.2.	2 Grundlast	53
	4	4.3.2.	3 Lenkung	54
4.3.2.		4.3.2.	4 Gurtstraffer	55
	4	4.3.2.	5 Weitere Komponenten	55
	4.3	3.3	Ansteuerung	55
	4.3	3.4	Messsystem	58
	4.4	Leis	stungsfähigkeit und Reproduzierbarkeit	59
	4.4	4.1	Überlagerung	60
	4.4	1.2	Reproduzierbarkeit	61
	4.5	Val	idierung	63
	4.6	Sch	lussfolgerungen	68
5	Ma	aßnal	hmen zur Bordnetzstabilisierung	71
	5.1	Bor	dnetzstabilisierung ohne Erweiterungen	71
	5.1	1.1	Optimierung des Kabelstrangs	71
	5.1	1.2	Reduzierung der Aufnahmeleistung	74
5.		1.3	Lastreduktion	.79
	5.1	1.4	Vermeidung von Überlagerung	84
5.1.5		1.5	Zeitliche Entzerrung von Überlagerungen	
	5.1	1.6	Leistungsmanagement	92
	ı	516	1 Potential	മാ

Inhaltsverzeichnis

5.1.6	.2	Koordination	93			
5.2 Bo	rdne	etzstabilisierung durch Erweiterungen	95			
5.2.1	Μö	igliche Topologien	96			
5.2.2	Bat	tterieserielle, teilgeregelte Topologie	97			
5.2.3	Bat	tterieparallele, vollgeregelte Topologie	100			
5.2.3	.1	Konzept	100			
5.2.3	.2	Auslegung	101			
5.2.3.3 5.2.3.4		Regelung und Betriebsstrategie	106			
		Simulation	113			
5.2.3	.5	Aufbau	118			
5.2.3	.6	Vermessung	122			
5.2.3	.7	Verifikation	127			
5.2.3	.8	Zusammenfassung und Ausblick	130			
6 Resüm	nee u	ınd Fazit	133			
Literaturverzeichnis						
Abkürzungsverzeichnis						
Verzeichnis verwendeter Formelzeichen14						