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Abstract

Synchronization is a phenomenon that is widely studied in different fields. In
the case of artificial neural networks, two feed-forward networks can eventually
synchronize by exchanging their outputs and applying a suitable learning rule.
The dynamics of this process has been studied for the so-called permutation par-
ity machine. This is a binary variant of the well-known tree parity machine in
which the weights are small integers that are not adjusted, but completely re-
placed during each learning step. In the permutation parity machine, a new set
of weights is pseudo-randomly drawn from a pool of binary data after the outputs
have been exchanged. Synchronization is a result of competing stochastic forces
given by a sequence of increasing and decreasing overlaps. This sequence consti-
tutes a random process endowed with the Markov property. More concretely, the
mutual learning process can be described by a first-order Markov chain where
synchronization amounts to the stationarity of the chain.

Nowadays, cryptography plays an ever more important role in information
security given the countless scenarios in which information exchange requires
different levels of privacy, secrecy or reliability. To this end, cryptographic algo-
rithms based on neural synchronization can be used, since mutual learning leads
to synchronization much faster than learning by examples.

In this work, a key exchange protocol based on permutation parity machines
has been studied. It has been proved that even though the weights used dur-
ing each learning step are not strongly correlated, synchronization still occurs.
Moreover, the lack of correlation among the weights during the synchroniza-
tion process makes the key exchange protocol robust not only against common
attacks, e.g. simple or geometric attacks, but also against attacks based on
non-standard schemes, such as majority, genetic or probabilistic attacks.

Permutation parity machines make use of a more complex learning rule than
the tree parity machines, especially due to the process of weight assignment.
Nevertheless, the simplicity of the network compensates for the complexity of
the learning rule in terms of hardware implementation. Additionally, the use of
a permutation network based on a linear feedback shift register helps to reduce
considerably the complexity in the assignment of the weights during the learning
step.

The key exchange protocol based on permutation parity machines does not
require lengthy mathematical calculations and so is suitable for implementation
by embedded systems where hardware constraints are decisive. Various alterna-
tives of hardware implementations have been considered, including FPGA, RISC
MCU, RFID tags and NFC devices.
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