QoS-Aware Live IPTV Streaming Over Wireless Multi-hop Networks

Dissertation

zur Erlangung des akademischen Grades Dr. rer. nat. an der Fakultät für Mathematik, Informatik und Naturwissenschaften der Universität Hamburg

eingereicht beim Fach-Promotionsausschuss Informatik von

Alireza Abdollahpouri

aus Boukan (Iran)

Juni 2012

Berichte aus dem Forschungsschwerpunkt Telekommunikation und Rechnernetze

Band 8

Alireza Abdollahpouri

QoS-Aware Live IPTV Streaming Over Wireless Multi-hop Networks

Shaker Verlag Aachen 2012

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available in the Internet at http://dnb.d-nb.de.

Zugl.: Hamburg, Univ., Diss., 2012

Copyright Shaker Verlag 2012 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the publishers.

Printed in Germany.

ISBN 978-3-8440-1303-0 ISSN 1439-3573

Shaker Verlag GmbH • P.O. BOX 101818 • D-52018 Aachen Phone: 0049/2407/9596-0 • Telefax: 0049/2407/9596-9 Internet: www.shaker.de • e-mail: info@shaker.de

Editorial

The strongly increased performance of IP based networks – in particular during the past decade - meanwhile allows Telecoms and other service providers to offer services with real-time requirements at an acceptable level of quality-of-service (QoS). Voice transmission via the Internet (Voice over IP or VoIP for short) represents an important example of a real-time service which is widely used nowadays. However, also services which require a data rate significantly higher than VoIP are getting more and more important such as the transmission of TV programs via the Internet (by means of IPTV services). As opposed to the traditional way of providing TV programs (e.g. using satellite, cable TV or terrestrial wireless transmissions) by means of broadcasting the TV channels, the original communication protocols of the Internet have been conceived for communications between two partners (so-called point-to-point communication). Though point-to-point communication is still an appropriate model for a phone call between two persons, communication using this principle typically will overload the sender (as well as the network used) if this sender has to distribute the same information to a possibly very large number of receivers as it is the case when providing TV programs. On the other hand, broadcasting information via large portions of the Internet is also infeasible because this would imply the flooding of the networks involved. A compromise between point-to-point communication and broadcasting is offered by multicast communication, in which case a sender will transmit the same information to a group of receivers (which may dynamically vary). In multicast communications, data is transmitted only once if the paths to multiple receivers use overlapping links. Typically, multicast will be indispensable for establishing IPTV systems and the assessment of its usefulness is representing an important scientific challenge, which was one of the motivations for the author of this thesis.

IPTV systems can be offered by means of different kinds of access networks providing access to the Internet. Currently, IPTV services are available mostly via DSL access networks, but usage of wireless access networks (such as WiMAX, LTE) is becoming increasingly relevant. In this context, too, Alireza Abdollahpouri is providing significant scientific contributions, because his studies mainly focus on access networks based on WiMAX, where he does not limit his investigations to single-hop configurations but he also takes into account multi-hop configurations with tree-topologies. In this publication – representing the PhD thesis of the author – a variety of results have been elaborated which are theoretically well-founded but, at the same time, are also very relevant for practical use in such areas as dimensioning of (IPTV) systems, service availability analysis and improvement, measurement-based IPTV user modeling and characterization, assessment and improvement of quality-of-experience (QoE) for IPTV services.

In particular, the thesis comprises

- new measures (called 'multicast gain'), which allow one to assess the usage of multicast versus unicast, both, for wired and for wireless links in networks;
- realistic models to characterize the behavior of IPTV users;
- methods to calculate the overhead resulting from multicasting and unicasting TV channels in WiMAX based IPTV systems;
- algorithms to reduce the channel switching delay in IPTV systems with users zapping channels frequently.

This innovative research report should be a valuable source of information to researchers, developers, Internet Service Providers (ISPs), and also to (post-) graduate students who are interested in the design, analysis, assessment, construction and/or installation of efficient and highly available IPTV systems with WiMAX-based access networks.

Hamburg, in August 2012

Bernd E. Wolfinger

Abstract

New generation which have grown up with Internet and interactive gaming, are no longer satisfied with traditional one-way broadcasting of TV programs. The paradigm shift from push-based media broadcasting to pull-based media streaming has been started in recent years and will be accelerated in the next few years. Internet Protocol Television (IPTV) is a good example to illustrate this claim.

IPTV describes a mechanism for transporting TV streams encapsulated in IP packets using networking protocols and tries to offer more interactivity and more control over the content. When offered via wireless technologies, IPTV can pave the way for quad-play in next generation networks. However, the stringent QoS requirements of IPTV streams are very hard to achieve in wireless networks. This is mainly related to the natural characteristics of wireless environments, such as frequent packet loss, vulnerability to physical factors and fluctuations in channel condition. The problem becomes even worse in multi-hop wireless networks.

WiMAX as one of the 4G candidates has several outstanding features that make it an ideal candidate to deliver IPTV services to fixed and mobile subscribers.

In this thesis, we investigate some of the challenges of IPTV transmission, mainly in wireless networks. The type of wireless networks which will be covered by this thesis is based on OFDMA-based WiMAX networks. In particular, we focus on the following aspects: the efficiency of multicasting, modeling the behavior of IPTV users, capacity evaluation and effects of overhead in WiMAX networks, and reducing channel switching delay. The objectives are related to each other and each objective is investigated in a dedicated chapter.

Zusammenfassung

Die jüngste Generation, welche mit dem Internet und interaktiven Spielen aufgewachsen ist, ist nicht mehr mit der traditionellen Einweg-Ausstrahlung von TV-Programmen zufrieden. Der Paradigmenwechsel von der Bereitstellung von TV-Programmen im Rundsendebetrieb hin zur bedarfsabhängigen Auslieferung der Programme hat bereits in den letzten Jahren begonnen und wird in den kommenden Jahren weiter ansteigen. Internet Protocol Television (IPTV) ist ein gutes Beispiel, um diese Behauptung zu untermauern.

IPTV ist ein Mechanismus für den Transport von TV-Strömen, gekapselt in IP-Paketen, unter Nutzung von Netzwerkprotokollen, um auf diesem Weg mehr Interaktivität und Kontrolle über die Inhalte zu erreichen. Wenn dies über Drahtlos-Technologien realisiert wird, dann kann IPTV den Weg für 'Quadruple Play' (d.h. das Zusammenwachsen von Festnetz, Fernsehen, Breitband und Mobilfunk auf Basis der IP-Technik) in Netzen der nächsten Generation ebnen. Dies bezieht sich hauptsächlich auf natürliche Charakteristika von Drahtlos-Umgebungen, wo häufiger Paketverlust. Anfälligkeit gegenüber physischen Faktoren und Fluktuationen der Übertragungsqualität im Kanal auftreten. Dieses Problem verschärft sich noch in 'Multi-Hop'-Drahtlosnetzen.

WiMAX, als einer der wichtigsten Standards für Mobilfunknetze der 4. Generation, verfügt über zahlreiche besondere Merkmale, die es zu einem idealen Kandidaten machen, um IPTV-Dienste für Festnetz- und Mobilfunkabonnenten zur Verfügung zu stellen.

In dieser Arbeit untersuchen wir Herausforderungen der IPTV-Übertragung, insbesondere in drahtlosen Netzen. Diese Arbeit behandelt OFDMA-basierte WiMAX-Netze, wobei wir besonderen Fokus auf folgende Aspekte legen: die Effizienz von Multicast, die Modellierung des Verhaltens von IPTV-Nutzern, Kapazitätsbewertung und Auswirkungen des Overheads in WiMAX-Netzen sowie die Verringerung der Kanalumschaltzeiten. Diese Ziele stehen miteinander in Relation und jedes Ziel wird in einem eigenen Kapitel untersucht.

Acknowledgement

This thesis is a result of not only the efforts of my work, but also the guidance, support, and love from many people to whom I am indebted.

First of all, I would like to thank my supervisor, Prof. Bernd E. Wolfinger, from my deepest heart. He opened up invaluable research opportunities and taught me important lessons. He would continually encourage me to look at the big picture when I was too focused on the details. His significant enlightenment, guidance and encouragement on my research are invaluable for the success of my Ph.D. studies and have made the road to completing this thesis smoother. I will always need his wisdom and expertise in my future academic career.

I would also like to thank all the members of the Telecommunication and Computer Networks Group (TKRN) for their support and friendship and providing a very welcoming atmosphere. Without their collaborations, I would not have the achievements so far. I want to express my gratitude to Junyu Lai, Andrey Kolesnikov, Sadaf Momeni, Dr. Klaus Heidtman, Dr. Martin Lehman, Dr. Sudip Misra, Dr. Stephan Heckmüller, Torsten Meyer, Robert Olotu and Yan Zhang for their guidelines and helpful questions in the weekly graduate seminar sessions. My special thanks also go to Mrs. Katrin Köster, the secretary of TKRN for her significant aids during my Ph.D.

My deepest, heartfelt thanks go to my wife, Baianeh, and our son, Shaian. Without their understanding and encouragement, this work would not have been accomplished. Their emotional support and patience during difficult times motivated me to continue the way.

My special gratitude is due to my parents who laid the foundation of my education and my brothers for their loving support. Without their continuous support and prayers, it would have been impossible for me to finish this work.

I would like to show my gratitude to Mr. Peiman Karimi and his wife who kindly helped and supported me from Iran in numerous ways.

University of Kurdistan is highly acknowledged for financial support during my stay in Hamburg.

Many thanks go to my Iranian friends, Mr. Khaled Panahi and his wife for their extreme help and support from the first day of my arrival until now, Esmaeil Ghazi, Kamyar Salehi, Mehdi Hashemi and their families, Ali Shalbafan and Dr. Mohammad Moosavi Nejad.

Finally, I would like to thank all those who frequently asked "how is your thesis going?"

Table of Contents

1 – INRODUCTION	1
1.1 Motivation	1
1.2 Goals of the Thesis	6
1.3 Organization of the Thesis	9
2 – BACKGROUND	11
2.1 Basics in Video Coding and Video Distribution	11
2.1.1 MPEG Video Encoding	11
2.1.1.1 Blocks, Macroblocks, and Slices	12
2.1.1.2 MPEG Frame Types	13
2.1.1.3 Group of Pictures (GOP)	14
2.1.1.4 MPEG Encapsulation within IP	14
2.1.1.5 MPEG Transport Stream	15
2.1.2 Scalable Video Coding (SVC)	16
2.1.3 Unicast and Multicast in Packet Switched Networks	17
2.1.4 QoS and QoE in Multimedia Transmission	19
2.1.4.1 QoS Definition	19
2.1.4.2 QoS Parameters	19
2.1.4.3 Techniques to Improve QoS	20
2.1.4.4 QoS vs. QoE	21
2.2. IPTV	22
2.2.1 Definition	22
2.2.2 IPTV vs. Internet TV	23
2.2.3 IPTV System Structure	24
2.2.4 Access Network Technologies	26
2.3 WiMAX	27
2.3.1 Overview of WiMAX Physical and MAC Layers	28
2.3.2 WiMAX Multicast Broadcast Service (MBS)	31
2.3.3 WiMAX Multi-hop Relay Network (IEEE 802.16j)	32

3 – NEW MEASURE TO QUANTIFY THE GAIN OF MULTICAST

3.1 Motivation	37
3.2 Related Work on Multicast Efficiency	40

37

3.3 New Measures for Multicast Gain	44
3.4 Generalization of Multicast Gain for Links with Different	47
characteristics	47
3.4.1 Link Model I (Links with fixed data rate)	47
3.4.2 Link Model II (Shared link with variable data rates)	49
4 – APPLICATION OF MULTICAST GAIN	53
4.1 Multicast Gain in a Single Wired Link	53
4.1.1 Calculation of Multicast Gain and Threshold Definition	53
4.1.2 Case Studies and Numerical Results	56
4.1.2.1 Bandwidth Requirement in Multicast and Unicast	
scenarios for Different Numbers of Clients	57
4.1.2.2 Multicast Gain and Threshold	57
4.2 Multicast Gain in Wired Tree-Structured Distribution Networks	60
4.2.1 Definition of the Problem and Basic Assumptions	60
4.2.2 Calculating Multicast Gain in General Tree Topologies	61
4.2.2.1 Multicast Gain in Access Networks	62
4.2.2.2 Multicast Gain on the Lowest Level of the Distribution	
Network	63
4.2.2.3 Multicast Gain on Higher Levels	64
4.2.3 Multicast Gain in K-ary Trees with L Levels	66
4.2.3.1 Regular Tree Structures	66
4.2.3.2 Distribution of Clients	67
4.2.4 Case Studies and Numerical Results	68
4.2.4.1 Effect of Client Distribution and Watching Probability	60
on Multicast Gain	69
4.2.4.2 Effect of Number of Clients and Watching Probability	
on Multicast Gain	70
4.3 Multicast Gain in WiMAX Access Links	72
4.3.1 Problem Definition and Assumptions	72
4.3.2 Case Studies and Numerical Results	78
4.3.2.1 Effect of Number of Users on Multicast Gain	80
4.3.2.2 Effect of Video Format on Multicast Gain	81
4.3.2.3 Multicast Gain for Different TV Channels in a Real	
IPTV System	82
4.4 Multicast Gain in WiMAX Multi-hop Access Networks	84
4.4.1 Introduction and Literature Review	84
4.4.2 Multicasting in IEEE 802.16j Networks	85

4.4.2.1 MBS Connection Management and Distribution Tree	
Creation	85
4.4.2.2 MBS Synchronization and Remapping	87
4.4.3 Definition of the Problem and Basic Assumptions	89
4.4.4 Multicast Gain Calculation in IEEE 802.16j Networks	91
4.4.4.1 Multicast Gain of Access Links	91
4.4.4.2 Multicast Gain of Relay Links	92
4.4.5 Case Studies and Numerical Results	94
4.4.5.1 Effect of Client Distribution on Multicast Gain	95
4.4.5.2 Effect of Link Capacity on Multicast Gain	96
4.4.5.3 Effect of Number of Clients on Multicast Gain	97

99

5 – MODELING IPTV USER BEHAVIOR AND TV CHANNEL POPULARITY

5.1 Introduction and Motivation	99
5.2 Related Work Survey	100
5.2.1 Related Work on Modeling TV Channel Popularity	100
5.2.2 Related Work on Modeling IPTV User Activity	103
5.3 Modeling the Channel Popularity in IPTV Systems Using	
Clustering Methods	106
5.4 Modeling User Behavior in Different Levels and the Main	
Factors in an IPTV System	108
5.5 Behavior of a Single IPTV User During an ON Session	115
5.5.1 What Happens During a Channel Switching Event?	116
5.6 Problems in Modeling the Behavior of IPTV Users	118
5.6.1 Modeling the Number of Channels Browsed in Zapping	
Mode by a Single User	118
5.6.2 Modeling the User-specific Access Pattern of the TV	
Channels	120
5.6.3 Modeling the Watching Time of a Currently Watched	
Channel for a Single User	120
5.6.4 Modeling Users with Different Zapping and Viewing	
Behaviors	124
5.6.5 Modeling Correlation in Switching Behavior of Users	124
5.7 Presenting Our Proposed TV-UBA Model	125
5.7.1 Introduction to LoadSpec	126
5.7.2 Description of the Model	127
5.7.3 Tuning TV-UBA Parameters	131
5.7.4 Implementation of TV-UBA Using LoadSpec Tool	134

6 – OVERHEAD ANALYSIS IN WIMAX-BASED IPTV SYSTEMS

6.1 Introduction	137
6.2 Related Work	138
6.3 Overhead Analysis in WiMAX Frames	140
6.4 Simulation and Analytical Methods	143
6.4.1 Evaluation based on Simulation	143
6.4.2 Evaluation Based on Analytical Method	147
6.5 Case Study	148
6.5.1 Overhead Slots	149
6.5.2 Unused Multicast Channels	149
6.5.3 Feasibility	151
6.5.4 Effect of Scheduling on Overhead	153
6.5.5 Comparing Simulation and Analytical Results	154

137

155

7 – REDUCTION OF IPTV CHANNEL SWITCHING DELAYS

7.1 Introduction	155
7.2 Related Work	156
7.2.1 Reduce I-frame Acquisition Delay	156
7.2.1.1 Use Additional Stream	157
7.2.1.2 Inserting Extra I-frames and Reducing the Size of GOP	158
7.2.2 Prediction-based Mechanisms	158
7.2.3 Techniques based on Scalable Video Coding	159
7.2.4 Techniques based on IGMP Schemes	160
7.3 Background	161
7.4 Proposed Prediction-based Prejoin Method	163
7.5 Performance Evaluation	166

8 – SUMMARY AND OUTLOOK 171

8.1 Summary of the Thesis Resu	ults	171
8.2 Outlook and Future Work		174

References	1′	7	7	1
------------	----	---	---	---

List of Figures

1.1	Examples of mobile TV devices	4
1.2	The relationship between objectives of the thesis	10
2.1	Temporal relation between two subsequent frames	12
2.2	MPEG blocks, macroblocks and slices	13
2.3	MPEG Group of Picture (GOP)	14
2.4	MPEG encapsulation in IP packet	15
2.5	PAT and PMT tables	16
2.6	Scalable video coding	17
2.7	IP Multicasting	18
2.8	QoE and QoS	21
2.9	Visual impairments due to packet loss	22
2.10	IPTV systems structure with wired and wireless access networks	26
2.11	WiMAX TDD frame structure	30
2.12	Bandwidth allocation unit in WiMAX	30
	MBS zone	32
	Relaying for throughput enhancement, and coverage extension	33
2.15	Tree-structured multi-hop relay	34
2.16	Downlink access and relay links	35
3.1	Multicast and unicast transmission	37
3.2	Traversed hop in multiple unicast transmission	40
3.3	Multicast metric against the size of multicast group	42
3.4	Cost growth in relation to the number of users	43
3.5	Multicast gain for different values of parameter α	44
3.6	Dynamic change in the number of viewers	46
3.7	Multicasting via a link with fixed data rate	48
3.8	Multicasting via a wireless shared link	50
3.9	A combination of different link models in WiMAX access network	51
4.1	Multicasting and unicasting in DSL access network	54
4.2	Bandwidth requirement in multicast and unicast cases	58
4.3	Multicast gain and threshold	59
4.4	Tree-structured network to deliver TV programs	61
4.5	Number of unicast and multicast flows	62
4.6	Multicast gain in access networks	63
4.7	Access networks and lowest levels of the distribution tree	64
4.8	Level <i>h</i> and level <i>h</i> -1 subtrees	65
4.9	K-ary trees with L levels	67
4.10	A tree-structured network and the distribution of clients in access	
	nodes	68
	Effect of user distribution on multicast gain	70
	Effect of number of clients on multicast gain	71
4.13	Multicast threshold	72

4.14	A WiMAX-based IPTV system	73
	The relationship between distance and MCS	74
	Multiple unicasting and multicasting in a WiMAX cell	75
	Multicast gain for different number of users	81
	Multicast threshold for 50 clients	81
	Multicast gain for different video formats	82
	Multicast gain for TV channels in a real IPTV system	83
	Paths and multicast distribution tree	86
	Synchronized MBS transmission	88
	MBS burst re-mapping in relay stations	89
	Tree-structured MMR network to deliver TV programs	90
	Lowest level relay links	92
	Concept of sub-trees in MMR networks	93
	Effect of user distribution on multicast gain	95
	Effect of link capacity (quality) on multicast gain	96
	Efficiency of multicasting in different relay links	97
	Effect of number of clients on multicast gain	98
5.1	Popularity of TV channels in log-log scale	101
5.2	Aggregation of channel switching events	104
5.3	Classification of TV channels using <i>K</i> -means clustering algorithm	108
5.4	Monitoring IPTV user activity in different levels	108
5.5	The main factors in an IPTV system and their mutual impacts	109
5.6	Aggregation of user behavior in higher levels	110
5.7	Temporal change in channel popularity	111
5.8	Switching ON events	113
5.9	Switching OFF events	113
5.10	Number of viewers during a day	114
5.11	Number of viewers over a week period	114
5.12	Channel zapping and viewing	115
5.13	Three main problems in modeling switching behavior of a single user	118
5.14	Average number of surfed channels before viewing	119
5.15	Channel dwell time in log-log scale	121
5.16	Channel dwell time in zap mode modeled by Burr distribution	122
5.17	Channel dwell time in zap mode modeled by lognormal distribution	122
5.18	Channel dwell time in viewing mode modeled by Gamma distribution	123
5.19	A periodic function to model the correlation in zapping	125
5.20	The set of the macro-states and the transitions between them	126
5.21	TV-UBA	127
5.22	Viewing and zapping modes	128
5.23	Sequential and targeted channel switching	134
5.24	IPTV User behavior modeling using LoadSpec	135
	Output of the TV-UBA model in LoadSpec tool	135
6.1	DL subframe in a WiMAX frame and overhead for control information	138
6.2	Persistent allocation vs. dynamic allocation	139
6.3	Multicast and unicast in a 2-cell MBS zone	141

6.4	Simulation scenario	144
6.5	Simulation algorithm	145
6.6	Concentric circles to divide the cell in to different MCS regions	147
6.7	Average number of overhead slots	150
6.8	Average number of unused multicast channels	150
6.9	Feasibility analysis for 140 users	151
6.10	Feasibility analysis for 210 users	152
6.11	Feasibility analysis for 300 users	152
6.12	Effect of scheduling on total bandwidth requirement for 210 users	153
6.13	Simulation vs. analytical method	154
7.1	Companion stream to reduce zapping delay	157
7.2	Channel prejoining to decrease zapping delay	159
7.3	Scalable video coding to decrease zapping delay	160
7.4	Categorization of zapping delay reduction schemes	161
7.5	Multicast and unicast in a WiMAX cell	162
7.6	<i>Prejoin1</i> (<i>C_i</i>) probability state diagram	164
7.7	Channel switching events in a period of time	165
7.8	WiMAX access network with MBS server	166
7.9	Required slots when multicasting N most popular channels and unicast	
	the rest of the requested channels	167
	Simulation flowchart	169
7.11	Average zapping delay with and without prejoining	170

List of Tables

2.1	The differences between Internet TV and IPTV	24
2.2	Relay modes	36
4.1	Threshold for different number of active clients	60
4.2	Parameter setting	79
4.3	Parameters for different MCSs	79
4.4	Threshold for different number of active clients in a WiMAX cell	84
5.1	Notations and parameters	130
6.1	Simulation parameters	146
7.1	An example of zapping delay reduction with prejoining	166

XVIII

List of Acronyms

3GPP: Third Generation Partnership Project **4G**: Fourth Generation of cellular wireless standards AAA: Authentication, Authorization and Accounting **AAS:** Advances Antenna Systems AMC: Adaptive Modulation and Coding AP. Access Point **ARO:** Automatic Repeat reQuest **ASN:** Access Service Network **ASN-GW:** Access Service Network Gateway AVC: Advanced Video Coding AZ: Access Zone **BE**: Best Effort **BL**: Base Layer **BPSK:** Binary Phase Shift Key **BR**: Bandwidth Request **BRAS:** Broadband Remote Access Server **BS**: Base Station **BSID**: Base Station Identifier **BTV**: Broadband TV CA: Conditional Access CAT: Conditional Access Table **CBP**: Call Blocking Probability **CBR**: Constant Bit Rate **CDF**: Cumulative Distribution Function **CID**: Connection Identifier **CIF**: Common Intermediate Format **CQICH**: Channel Quality Indicator Channel **CRC**: Cyclic Redundancy Check **CS**: Convergence Sub-layer **DCD**: Downlink Channel Descriptor **DiffServ:** Differentiated Services **DL**: Downlink

DRM: Digital Right Management **DSA:** Dynamic Service Addition **DSC:** Dynamic Service Change **DSD**: Dynamic Service Deletion **DSL**: Digital Subscriber Line **DSLAM:** DSL Access Multiplexer **DSS:** Dynamic Station Selection **DVB-H**: Digital Video Broadcasting-Handheld **DVMRP:** Distance Vector Multicast Routing Protocol **DVR**: Digital Video Recording EL: Extended Layer **EPG**: Electronic Program Guide ertPS: extended Real-time Polling Service FCH: Frame Header Control **FDD**: Frequency Division Duplex **FDMA**: Frequency Division Multiple Access **FFT**: Fast Fourier Transform FIFO: First In First Out FTTC: Fiber-To-The-Curb FTTH: Fiber-To-The-Home **FTTP**: Fiber-To-The-Premise FTTx: Fiber-To-The-x **GOP**: Group of Pictures **GPS**: Global Positioning System HD: High Definition **HG**: Home Gateway **IE**: Information Element **IEC:** International Electro-technical Commission **IEEE:** Institute of Electrical and Electronics Engineers **IETF:** Internet Engineering Task Force IGMP: Internet Group Management Protocol **IP**: Internet Protocol **IPTV:** Internet Protocol Television ISI: Inter Symbol Interference **ISO:** International Organization of Standards

ITU-T: International Telecommunication Union – Telecommunication Standardization Sector LOS: Line-of-Sight LTE: Long Term Evolution MAC CPS: MAC Common Part Sublaver MAC: Medium Access Control **MBMS**: Multimedia Broadcast Multicast Service **MBS**: Multicast Broadcasting Service MCID: Multicast Connection Identifier MCS: Modulation and Coding Scheme **MIMO**: Multiple-Input Multiple-Output **MLD**: Multicast Listener Discovery **MMR**: Mobile Multi-hop Relay **MOSPF:** Multicast Open Shortest Path First MPEG: Moving Picture Expert Group **MPEG-TS**: Motion Picture Experts Group Transport Stream MPLS: Multi Protocol Label Switching MR-BS: Multi-hop Relay Base Station MS: Mobile Station nrtPS: Non-Real-Time Polling Service **OFDM:** Orthogonal Frequency-Division Multiplexing **OFDMA:** Orthogonal Frequency-Division Multiple Access P2P: Peer-to-Peer **PAT:** Program Allocation Table PCR: Program Clock Reference PDA: Personal Digital Assistant **PES**: Packetized Elementary Stream **PHS:** Payload Header Suppression PID: Program Identifier **PIM:** Protocol Independent Multicast **PIP:** Picture-In-Picture **PMP**: Point to Multi-Point **PMT**: Program Map Table **PSI:** Program Status Information **PUSC:** Partial Usage of Sub-channels QAM: Quadrature Amplitude Modulation

OCIF: Ouarter Common Intermediate Format **QoE**: Quality of Experience **QoS**: Quality of Service **RS**: Relay Station **RSVP**: Resource Reservation Protocol **RTG**: Receive/Transmit Time Gap rtPS: Real-time Polling Service **RZ**: Relav Zone SD: Standard Definition SFID: Service Flow Identifier SLA: Service Level Agreement SMP: Semi-Markov Process SNR: Signal to Noise Ratio **SS**: Subscriber Station STB: Set Top Box SVC: Scalable Video Coding TCP: Transmission Control Protocol **TDD**: Time Division Duplex **TDM**: Time Division Multiplexing TTG: Transmit/Receive Time Gap **UBA**: User Behavior Automata **UDP**: User Datagram Protocol **UGS:** Unsolicited Grant Services UL: Uplink **VOD**: Video on Demand VoIP: Voice over IP **VQE**: Visual Quality of Experience **WFQ**: Weighted Fair Queuing WiMAX: Worldwide Interoperability for Microwave Access