Grain boundary-dislocation interaction:

A local investigation via micron-sized bicrystals

Dissertation

Zur Erlangung des Grades des Doktors der Ingenieurwissenschaften (Dr.-Ing.) der Naturwissenschaftlich-Technischen Fakultät III Chemie, Pharmazie, Bio- und Werkstoffwissenschaften der Universität des Saarlandes

Von

Nousha Kheradmand

Saarbrücken, Mai 2012

Tag des Kolloquiums:10.05.2012Dekan:Prof. Dr. W.F. MaierBerichterstatter:Prof. Dr. H. VehoffProf. Dr. F. MücklichProf. Dr. F. MücklichVorsitzender:Prof. Dr. R. HempelmannAkad. Mitarbeiter:Dr. Isabella Gallino

Saarbrücker Reihe

Materialwissenschaft und Werkstofftechnik

Band 33

Grain boundary-dislocation interaction: A local investigation via micron-sized bicrystals

Nousha Kheradmand

Herausgeber:

Prof. Dr. rer. nat. Horst Vehoff

Prof. Dr. Eduard Arzt Prof. Dr.-Ing. Christian Boller Prof. Dr. rer. nat. Ralf Busch Prof. Dr. rer. nat. Rolf Clasen Prof. Dr.-Ing. Stefan Diebels Prof. Dr.-Ing. Frank Mücklich Prof. Dr. rer. nat. Martin Müser Prof. Dr. rer. nat. Wulff Possart Prof. Dr.-Ing. Markus Stommel

> Shaker Verlag Aachen 2012

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available in the Internet at http://dnb.d-nb.de.

Zugl.: Saarbrücken, Univ., Diss., 2012

Copyright Shaker Verlag 2012 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the publishers.

Printed in Germany.

ISBN 978-3-8440-1158-6 ISSN 1860-8493

Shaker Verlag GmbH • P.O. BOX 101818 • D-52018 Aachen Phone: 0049/2407/9596-0 • Telefax: 0049/2407/9596-9 Internet: www.shaker.de • e-mail: info@shaker.de

Contents

Ac	Acknowledgments ii				
Lis	List of Tables				
Lis	ist of Figures vii				
Ab	ostract	xi			
Zu	Isammenfassung	xiii			
1.	Introduction	1			
2.	Literature review 2.1. Grain boundary-dislocations interaction . 2.2. Bicrystals in the literature . 2.2.1. Macroscopic bicrystals . 2.2.2. Microscopic bicrystals . 2.3. Criteria on slip transmission . 2.4. Mesoscopic bicrystals .	3 3 5 5 9 10 12			
3.	Experimental procedure 3.1. Sample preparation 3.1.1. Macroscopic sample preparation 3.1.2. Microscopic sample preparation 3.2. Characterization of microscopic samples 3.2.1. FIB-Pillars 3.2.2. FIB-Litho-Pillars 3.3.1. Positioning of micropillars under the flat-ended tip 3.3.2. Loading procedure 3.4.1. Micropillar microstructure 3.4.2. Micropillar free surface	15 15 15 28 28 28 31 31 32 36 36 39			
4.	Molecular Dynamics Simulation	41			
5.	Results and Discussion 5.1. Results of micromechanical tests	43 43			

		5.1.1.	Large pillars	45
		5.1.2.	Medium pillars	48
		5.1.3.	Small pillars	53
	5.2.	Discus	sion of micromechanical test results	60
		5.2.1.	FIB damage effect	60
		5.2.2.	Stress-strain curve analysis	62
		5.2.3.	Correlation between grain boundary effect and size $\ldots \ldots \ldots$	65
		5.2.4.	Slip line analysis	68
		5.2.5.	Slip Transmission	73
		5.2.6.	Consideration of elastic anisotropy	78
		5.2.7.	Consideration of source properties	79
		5.2.8.	Consideration of size effect hypothesis	81
	5.3.	Results	s of MD Simulation $\ldots \ldots \ldots$	86
	5.4.	Discus	sion on MD simulation results	88
	5.5.	Prelim	inary conclusion	90
	5.6.	Result	s of microstructural tests	92
		5.6.1.	Homogeneous medium with easy glide behavior	92
		5.6.2.	Homogeneous medium with the presence of non-planar dislocation	s 92
		5.6.3.	Inhomogeneous medium with the presence of a grain boundary	96
	5.7.	Discus	sion on microstructural test results	102
		5.7.1.	Homogeneous medium with easy glide behavior	102
		5.7.2.	Homogeneous medium with the presence of non-planar dislocation	s103
		5.7.3.	Inhomogeneous medium with the presence of a grain boundary	103
6.	Cone	clusion	and Outlook	107
	6.1.	Conclu	$sion \ldots \ldots$	107
	6.2.	Outloc	k	108
		6.2.1.	Determination of the grain boundary strength	108
		6.2.2.	In-situ compression tests	109
		6.2.3.	Hydrogen embrittlement	109
Α.	Com	patibili	ty conditions	111
в.	Prim	ne crite	ria on slip transmission	113
C.	Orie	ntation	characterization in OIM software	115
D.	Inve	stigatio	on of FIB damage by nanoindentation	119
E	Stra	in rate	sonsitivity of hierostalling micronillars	102
с.	Jura	in rate		123
F.	Finit	e Elem	ent Simulation	125

Acknowledgments

In the first place I would like to express my utmost gratitude to Prof. Dr. rer. nat. Horst Vehoff for his contribution to the completion this research work. I will never forget his insight into the world of science and his unique way of teaching and supervision, which makes one proud to be a scientist. Without his support and understanding during the beginning of the "baby time", I may not have been able to finish my PhD now.

I gratefully acknowledge Prof. Dr. Ing. Frank Mücklich for accepting to being a part of the Reading Committee of this thesis, and also for his support all along my studies at Saarland University, specifically within the AMASE Program.

I would like to thank Christine Welsch, my diploma student, for performing multisided experiments, from lithography, to cutting pillars in FIB, to nanoindentation, and Vitoria Boiko, my HiWi, for performing the long-term heat treatments of Ni samples.

Many thanks go in particular to Dr. Ing. Michael Marx, a multi-talented colleague and friend in social life, for constructive scientific comments, to Dr. Ing. Afrooz Barnoush for his fabulous theoretical and experimental ideas anytime and performing the MD simulations of this thesis, to Kerstin Schüler and Dirk Hildebrecht for being such nice friends and having unforgettable time together, to Tao Qian for sharing the office and many interesting discussions about saving the world, to Mohammad Zamanzadeh for his support when I needed his helps and hearing me when I needed somebody to talk, to Alain Knorr for helpful discussions on the heat treatment of Ni and invention of a new imaging equipment for my Ni samples: his scanner!, to Dr. Ing. Wolfgang Schäf for assisting in the start the *theoretische Grundlage der Werkstoffwissenschften*, to Dr. Ing. Markus Welsch, our EBSD measurements master, to Dr. Ing. Mark Henning for leaving so many useful self-developed software behind for us, to Dr. Camille Perrin for bringing the French culture nearer to us.

Collective and individual acknowledgments are also owed to other diploma and master students in our group: Bastian Philippi, Vera Marx, Martin Weinmann, Michael Bick, Velayarce Jorge Rafael, Philip Kerger, Markus Mischo.

Many thanks to Stephan Schmitz and Peter Limbach whose handiwork and good ideas served to design my sample holders, and who were fast if I needed something urgently. I also thank Andreas Kirsch and Rita Maron for their availability and support for laboratory materials. Many thanks to Frau Ohm, who accompanied us in the institute almost until the end of my work, for making the administrative work easier, and Frau Born for being so practical and fast in response. To Frau Galli and Melani Groh many thanks for organizing our library very well.

I would like to thank Prof. Mao Wen from the school of Materials Science and Engineering at Shanghai Jiao Tong University in China for providing us with his MD simulation code and his support during the simulation of the bicrystalline micropillar compression tests.

From the Institute of Functional Materials I would like to acknowledge Dr. Ing. Flavio Soldera, Christoph Pauly, Dominik Britz and Agustina Guitar for their support in the preparation of thin films, and special thanks to Paula Souza for the professional and quick English proof-reading.

From the Institute of Engineering Mechanics I would like to thank Dipl. Ing. Zhaoyu Chen for performing the FEM simulations of micropillar compression tests for this research and from the Institute of Technical Physic many thanks to Dipl. Ing. Jörg Schmauch for his assistance in performing the high resolution EBSD measurements.

Finishing this thesis would not have been possible for me without the incredibly nice people at the "Kindertagesstätte für Bedienstete der Universität des Saarlandes", specially Frau Hombücher, Nicole Wagner, Regiene Bleyer, Sandra and Manuela. I was extraordinarily fortunate in having you to take care of my child.

I would like to thank my parents, whose education and encouragement, love and sincerity brought me to where I am standing now; my brother and my other family members in Saarbrücken for their supports in all its forms; my parents in-law for their understanding and patience, and an angel in our neighborhood, Frau Hoffmann.

Finally, to my precious husband Afrooz, for your help especially in the crucial moments we spent together, for your permanently *good ideas* and your support in my scientific and daily life. And last but not least, my special thanks will be dedicated to my beautiful son *Suren*, for showing me that there is something more challenging than a PhD thesis.

Thank you all!

List of Tables

3.1.	Sample and surface preparation parameters	17
3.2.	The considered grain boundary parameters	19
3.3.	Lithography parameters in this study	24
3.4.	Electrochemical wet etching process parameters	25
3.5.	Two $5\mu\mathrm{m}$ diameter micropillars, each fabricated with a different tech-	
	nique, are compared in terms of time and beam current intensity. \ldots	27
3.6.	Crystallographic orientation, Schmidt factor and elastic modulus of the	
	grains included the single and bicrystalline pillars	30
5.1.	Yield stresses of bicrystalline and single-crystalline micropillars of $5\mu m$	
	diameter	45
5.2.	Yield stresses of bicrystalline and single-crystalline micropillars with di-	
	ameter 3 to $2\mu\mathrm{m}$	49
5.3.	Yield stresses of bicrystalline and single-crystalline micropillars of $1.4\mu{\rm m}$	
	diameter	53
5.4.	Yield stresses of bicrystalline and single-crystalline micropillars of $1\mu m$	
	diameter.	56
5.5.	The thickness of damaged layer on the free surface of the micropillars	~~
FC	with different damage levels	52
э.ө.	incoming sup system in grain A and potential outgoing sup systems in	
	grain D, Schind factor, angle α between the intersection lines of the sup-	
	as the angle A between the incoming slip plane in grain A (slip system 1)	
	and notential slip planes in the grain houndary plane (slip system 1)	
	and 4).	72
5.7.	Stress distribution of the component crystals.	
5.8.	Applied shear stresses on the primary slip systems in the component	
	crystals of the bicrystal using Equations 5.9 and 5.10	79
5.9.	The bicrystal and single crystal diameters with the relationship $r = R/\sqrt{2}$.	34
5.10.	Four bicrystals analyzed for grain boundary-induced lattice rotation in	
	details.	96
D 1	Parameters varied for the nanoindentation of FIR-damaged layers	20
	- a canceler be the manomation of the admissed hyperb.	-0

List of Tables

List of Figures

Nanoindentation of polycrystalline nickel with variable grain sizes used	
as a grain boundary effect test method	4
The lower bound estimate of the total GND density distribution around	
the indent [Wilkinson et al., 2010].	5
The misorientation angle θ affects the flow stress curves of the bicrystals.	6
A photomicrograph showing double glide in the vicinity of the grain	
boundary in a specimen with the misorientation of 85°	7
Stress-strain curves of (100) bicrystals having 4° , 14° and 37° misorien-	
tation boundaries compared with the component single crystals [Miura	
and Saeki, 1978]	7
Orientation images showing the successive progression of lattice orienta-	
tion after 30 % compression [Field and Alankar, 2011]	8
Slip transmission observed by the ex-situ and the in-situ TEM experiments	9
TEM observations showing the mechanisms of slip transmission across a	
grain boundary.	10
Schematic diagram showing the geometrical relationship between the in-	
coming and outgoing slip planes and θ [<i>Clark et al.</i> , 1992]	11
The special procedure developed for production of two-dimensional, struc-	
tured samples.	16
Nickel samples and the sample holders designed and employed in this work.	18
Grain boundary characterization according to grain boundary type defi-	
nitions	20
EBSD map of the polycrystalline bulk sample surface used to produce	20
nitions	20 21
nitions. EBSD map of the polycrystalline bulk sample surface used to produce micropillars. Different views from the electron and the ion beams directions of a typical	20 21
nitions	20 21 21
nitions. EBSD map of the polycrystalline bulk sample surface used to produce micropillars. Different views from the electron and the ion beams directions of a typical micropillar cut in a DB-FIB. The SEM image of a typical bicrystalline micropillar.	20 21 21 22
nitions. EBSD map of the polycrystalline bulk sample surface used to produce micropillars. Different views from the electron and the ion beams directions of a typical micropillar cut in a DB-FIB. The SEM image of a typical bicrystalline micropillar. SEM image of a pillar produced by electrochemical etching before and	 20 21 21 22
nitions. EBSD map of the polycrystalline bulk sample surface used to produce micropillars. Different views from the electron and the ion beams directions of a typical micropillar cut in a DB-FIB. The SEM image of a typical bicrystalline micropillar. SEM image of a pillar produced by electrochemical etching before and after FIB milling. Electrochemical etching before and after FIB milling.	 20 21 21 22 23
nitions. EBSD map of the polycrystalline bulk sample surface used to produce micropillars. Different views from the electron and the ion beams directions of a typical micropillar cut in a DB-FIB. The SEM image of a typical bicrystalline micropillar. SEM image of a pillar produced by electrochemical etching before and after FIB milling. Standard lithography procedure.	 20 21 21 22 23 24
nitions. EBSD map of the polycrystalline bulk sample surface used to produce micropillars. Different views from the electron and the ion beams directions of a typical micropillar cut in a DB-FIB. The SEM image of a typical bicrystalline micropillar. SEM image of a pillar produced by electrochemical etching before and after FIB milling. Standard lithography procedure. Light microscopy image made by normal contrast of lithographically-	 20 21 21 22 23 24
nitions. EBSD map of the polycrystalline bulk sample surface used to produce micropillars. Different views from the electron and the ion beams directions of a typical micropillar cut in a DB-FIB. The SEM image of a typical bicrystalline micropillar. SEM image of a pillar produced by electrochemical etching before and after FIB milling. Standard lithography procedure. Light microscopy image made by normal contrast of lithographically-produced, structured specimen.	 20 21 21 22 23 24 24
	The lower bound estimate of the total GND density distribution around the indent [Wilkinson et al., 2010]

0.111	The curves compare the two mentioned fabrication techniques: FIB- Pillars and FIB-Litho-Pillars. The ion current intensity used and the	
	time consumed in FIB are considered	26
3.12.	Crystallographic orientation of all the grains used for fabrication of mi-	
	cropillars studied	28
3.13.	A schematic of the TriboIndenter $^{^{TM}}$ and the bulk sample installed on the stage	31
3.14.	The topography images of the pillar surface before and after centering the position of the micropillar	32
3.15.	Schematical view of the flat-ended tip and the micropillar during the	
	imaging process	34
3.16.	Cyclic load function applied to the pillars at the beginning of the com- pression test.	34
3.17.	Stress-strain curves obtained from the open-loop/load-controlled and the displacement-controlled compression test. SEM image of a shape memory	
	alloy micropillar and its hysteresis stress-strain curve	35
3.18.	The film preparation out of a deformed bicrystalline micropillar	37
3.19.	SEM images and corresponding OIM maps of the two sides of a thick film out out of a deformed biorystal	20
3.00	SEM images of micropillars fabricated with different levels of ion beam	30
3.20.	damage	40
4.1.	The bicrystal generated in the MD software before deformation	42
4.1. 5.1.	The bicrystal generated in the MD software before deformation Schematic profile of (a) single-crystalline and (b) bicrystalline micropillars displaying the average diameter and height used for calculations	42 44
4.1.5.1.5.2.	The bicrystal generated in the MD software before deformation Schematic profile of (a) single-crystalline and (b) bicrystalline micropillars displaying the average diameter and height used for calculations Engineering stress-strain curves of bicrystals and single crystals of the same diameters $(5 \mu m)$	42 44 46
4.1.5.1.5.2.5.3.	The bicrystal generated in the MD software before deformation Schematic profile of (a) single-crystalline and (b) bicrystalline micropillars displaying the average diameter and height used for calculations Engineering stress-strain curves of bicrystals and single crystals of the same diameters $(5 \mu m)$	42 44 46 47
4.1.5.1.5.2.5.3.5.4.	The bicrystal generated in the MD software before deformation Schematic profile of (a) single-crystalline and (b) bicrystalline micropillars displaying the average diameter and height used for calculations Engineering stress-strain curves of bicrystals and single crystals of the same diameters $(5 \mu m)$	42 44 46 47 50
 4.1. 5.1. 5.2. 5.3. 5.4. 5.5. 	The bicrystal generated in the MD software before deformation Schematic profile of (a) single-crystalline and (b) bicrystalline micropillars displaying the average diameter and height used for calculations Engineering stress-strain curves of bicrystals and single crystals of the same diameters $(5 \mu\text{m})$	42 44 46 47 50 51
 4.1. 5.1. 5.2. 5.3. 5.4. 5.5. 5.6. 	The bicrystal generated in the MD software before deformation Schematic profile of (a) single-crystalline and (b) bicrystalline micropillars displaying the average diameter and height used for calculations Engineering stress-strain curves of bicrystals and single crystals of the same diameters $(5 \mu\text{m})$	42 44 46 47 50 51 52
 4.1. 5.1. 5.2. 5.3. 5.4. 5.5. 5.6. 5.7. 	The bicrystal generated in the MD software before deformation Schematic profile of (a) single-crystalline and (b) bicrystalline micropillars displaying the average diameter and height used for calculations Engineering stress-strain curves of bicrystals and single crystals of the same diameters $(5 \mu\text{m})$	42 44 46 47 50 51 52
 4.1. 5.1. 5.2. 5.3. 5.4. 5.5. 5.6. 5.7. 5.8. 	The bicrystal generated in the MD software before deformation Schematic profile of (a) single-crystalline and (b) bicrystalline micropillars displaying the average diameter and height used for calculations Engineering stress-strain curves of bicrystals and single crystals of the same diameters $(5 \mu\text{m})$	42 44 46 47 50 51 52 54
 4.1. 5.1. 5.2. 5.3. 5.4. 5.5. 5.6. 5.7. 5.8. 	The bicrystal generated in the MD software before deformation Schematic profile of (a) single-crystalline and (b) bicrystalline micropillars displaying the average diameter and height used for calculations Engineering stress-strain curves of bicrystals and single crystals of the same diameters $(5 \mu\text{m})$	42 44 46 47 50 51 52 54 54
 4.1. 5.1. 5.2. 5.3. 5.4. 5.5. 5.6. 5.7. 5.8. 5.0. 	The bicrystal generated in the MD software before deformation Schematic profile of (a) single-crystalline and (b) bicrystalline micropillars displaying the average diameter and height used for calculations Engineering stress-strain curves of bicrystals and single crystals of the same diameters $(5 \mu m)$	42 44 46 47 50 51 52 54 55
 4.1. 5.1. 5.2. 5.3. 5.4. 5.5. 5.6. 5.7. 5.8. 5.9. 	The bicrystal generated in the MD software before deformation Schematic profile of (a) single-crystalline and (b) bicrystalline micropillars displaying the average diameter and height used for calculations Engineering stress-strain curves of bicrystals and single crystals of the same diameters $(5\mu\text{m})$	42 44 46 47 50 51 52 54 55 57

5.11.	SE contrast SEM images of single crystals of the same diameters $(1 \mu m)$	
	after compression tests	59
5.12.	OIM maps and OGM analyses at the free surface of a Litho-Pillar, a	
	FIB-Litho-Pillar, a FIB-Pillar and a micropillar heavily bombarded with	
	the ion beam	61
5.13.	Engineering stress-strain curves of a bicrystals compared with the two	
	corresponding single crystals for different specimen diameters	64
5.14.	Schematic drawing of the source distribution in specimens with different	
	sizes	65
5.15.	Stress at 0.5% strain vs. pillar diameter.	67
5.16	The intersection lines of the slip planes on the grain boundary plane and	
0.10.	the intersection lines of the same slip planes on the pillar top surface are	
	indicated	70
5.17	The schematic view of four slip systems activated in a typical bicrystal	
0.1.1.	in this study	71
5.18	Activation of secondary slip systems at the grain boundary in a bicrystal	
0.10.	with the presence of primary slip systems (x 150) [Hook and Hirth 1967a]	73
5 19	Activation of slip system 2 in different small hiervstalline micronillars	75
5 20	Activation of slip system 2 in a hiervetals with 5 um diamators	76
5.20.	Double ended and single and d nile ups for two different positions of the	10
0.21.	Frank Read source as proposed by Friedman and Chrzen <i>Friedman and</i>	
	Chrzan 1008]	80
5 99	Cingle ended pile up for two different positions of the Frenk Deed courses	80
0.22.	in the emisted interior and on the emisted surface	80
ະ ຄວ	Since affact of single arrestelling milling mith (a) single glin arientation and	00
0.20.	(b) multiple clip orientation	<u>0</u> 0
E 94	(b) multiple slip orientation.	04
0.24.	For α_{i} (1.1.1)	09
E OF	10 \approx (1 1 1)	00
0.20.	the main hour down	01
F 00		04
5.26.	I ne relation between radii of the assumed two single crystals and the	01
F 07		04
5.27.	Bicrystals with diameter R are compared with the multiple slip oriented	05
F 00	single crystals of diameter r , where $R = \sqrt{2} r$.	80
ə.28.	Stress-strain curve obtained from the simulation of a Dicrystal under com-	00
F 00	pression testing.	80
5.29.	Sectional views from Y and Z directions at different strains shown by	07
F 00	points A, B and C in Figure 5.28.	87
5.30.	Grain boundary atoms at initial state compared to the yield point.	89
5.31.	A magnified view of the deformed pillar shows the slip transmission	89
5.32.	MD simulation predicts the activation of identical slip systems as ob-	0.0
_	served in experiments.	89
5.33.	Misorientation analysis of the perfect shear.	93

5.34.	Stepwise compression test of the single-crystalline pillar with double slip orientation 04
5.35. 5.36. 5.37. 5.38. 5.39. 5.40. 5.41.	$\begin{array}{llllllllllllllllllllllllllllllllllll$
A.1.	Bicrystal geometry employed in [Hook and Hirth, 1967a,b; Livingstone and Chalmers, 1957; Hauser and Chalmers, 1961]
B.1.	Pictured transmission criteria proposed by Livingstone (a) and Shen (b) [Kashihara and Inoko, 2001]
C.1. C.2.	The position of the crystal coordinate system of a typical grain relative to the sample coordinate system
D.1. D.2.	Schematical drawing of the Ni sample surface sputtered by different ion currents and at incidence angles
D.3.	Topography images of the irradiated regions with the help of in-situ imag- ing capability of the nanoindentation system
E.1.	Some typical results of the strain rate sensitivity compression tests on bicrystalline micropillars of the same size
F.1.	Stress distribution in different pillar geometries. (a) A tapered pillar. (b) An ideal cylinder with no tapering

Abstract

In this research work, an experimental method is developed at the mesoscopic scale to investigate the interaction of dislocations with a selected grain boundary and its strengthening effect as a function of the grain boundary type.

The local mechanical testing method is based on microcompression tests of Focused Ion Beam (FIB)-cut bicrystalline micropillars with the component crystals oriented for single slip and multiple slip. Orientations identical to the experiments are used to generate models of the bicrystalline micropillars with up to four million atoms (140 nm in diameter) in Molecular Dynamics (MD) simulations. The compression test of these bicrystals is followed by Electron Backscatter Diffraction (EBSD) measurements on the bicrystal cross sections to investigate crystal lattice rotation in correlation with the excess dislocation density.

The microscopic test specimens are fabricated using high-voltage ion beam currents, which leads to the interaction of the ions with the host material. This problem, referred to as "FIB damage", was examined by high-resolution EBSD and nanoindentation techniques. The results show that FIB damage is a function of the ion beam current and the crystallographic orientation of the lattice, and that its main effect is the introduction of surface defects and the facilitation of dislocation nucleation.

Different sized bicrystals, from 1 to 5 μ m in diameter, show different deformation behaviors. In bicrystals over 2 μ m in diameter, identical flow stresses to single crystals with multiple slip orientation are obtained. These bicrystals resemble two single-crystalline micropillars connected in parallel and Taylor hardening is the responsible mechanism of deformation. Diameters below 2 μ m, where the grain boundary-dislocation interaction plays a more crucial role than the dislocation-dislocation interaction, show a pronounced hardening effect of the grain boundary. Our EBSD measurements and the orientation analyses on the bicrystals with 1 μ m diameters prove the increase of the misorientation in the vicinity of the grain boundary. In contrast, in a large bicrystalline micropillar with a 5 μ m diameter, the orientation gradient is observed only in the bottom-up direction (parallel to the loading axis), which is a clear evidence of the independent deformation of the adjacent crystals. In agreement with the literature, lattice rotation is required for slip transmission and, thus, for compatible deformation of the bicrystals.

Zusammenfassung

Im Rahmen dieser Arbeit wurde eine experimentelle Methode entwickelt, um die Wechselwirkung zwischen Versetzungen und ausgewählten Korngrenzen, sowie ihre Verfestigungseffekte auf einer mesoskopischen Skala als Funktion des Korngrenzentyps zu untersuchen. Die lokale mechanische Testmethode basiert auf Mikro-Drucktests von Focused Ion Beam (FIB) geschnittenen bikristallinen Mikropillars, deren Einzelkristalle für Einfachgleitung sowie für Mehrfachgleitung orientiert sind.

Die gleichen Orientierungen werden benutzt, um Drucktests an bikristallinen Mikropillars mit bis zu vier Millionen Atomen mittels Molekular-Dynamik-(MD) Rechnungen zu simulieren. Im Anschluss an die Druckversuche wurden Electron BackScatter Diffraction (EBSD) Messungen auf der Querschnittsseite der Mikropillars durchgeführt, um die Gitterrotation des Kristalles in Korrelation mit Überschussversetzungen (excess dislocations) zu bestimmen.

Die Mikropillars wurden mit Ionenstrahlen hoher Beschleunigungs-Spannung hergestellt, was üblicherweise zu einer Wechselwirkung zwischen den Ionen und dem Probenmaterials führt. Dieses als "FIB Schädigungseffekt" bekannte Problem wurde durch hoch aufgelöste EBSD-Messungen und durch die Nanoindenter Messungen überprüft. Die Ergebnisse zeigen, dass die FIB Schädigung eine Funktion der Ionenstrahlstärke und der kristallographische Gitterorientierung ist und, dass ihr Haupteffekt die Erzeugung von Oberflächendefekten und dadurch eine erleichterte Versetzungsnukleation ist.

Unterschiedlich große Bikristalle von 1 bis 5 μ m Durchmesser zeigen unterschiedliches Verformungsverhalten. In Bikristalle über 2 μ m Durchmesser ist die Fließspannung gleich der Fließspannung einkristalliner Mikropillars, die für Mehrfachgleitung orientiert sind. Diese Bikristalle gleichen zwei einkristallinen "parallel geschalteten" Mikropillars wobei die Taylor Verfestigung die Verformung kontrolliert. Bikristalle unter 2 μ m Durchmesser zeigen ausgeprägte Verfestigungseffekte der Korngrenze, wobei die Wechselwirkung zwischen Korngrenze und Versetzung eine wesentlich wichtigere Rolle als die Wechselwirkung der Versetzungen untereinander spielt.

Die EBSD Messungen an Bikristallen mit 1 μ m Durchmesser und die darauf basierende Orientierungsanalyse weisen eine steigende Fehlorientierung in unmittelbarer Nähe der Korngrenze nach. Im Gegensatz dazu ist in einem großen Bikristall mit 5 μ m Durchmesser der Orientierungsgradient nur in der "Bottom-Up"-Richtung (parallel zu der Belastungsrichtung) zu beobachten, was ein klarer Beweis für die unabhängige Verformung beider Einzelkristalle ist. In Übereinstimmung mit der Literatur konnte die Gleittransmission als Ursache für die Gitterrotation bestätigt werden und somit für die kompatible Verformung der Bikristalle als erforderlich identifiziert werden.

I would probably not say everything I think, but definitely think all I say.

_

Gabriel Garcia Marquez