Berichte aus der Medizinischen Physik

Horst Müller

Physikalische Grundlagen für die Funktionssimulation der Ionisations-Durchstrahlkammer in der Röntgendiagnostik

Shaker Verlag Aachen 2012

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Copyright Shaker Verlag 2012

Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Satz: Martin Sievers – Einfach schöner publizieren, Trier.

Printed in Germany.

ISBN 978-3-8440-1183-8

ISSN 1617-2965

Shaker Verlag GmbH • Postfach 101818 • 52018 Aachen

Telefon: 02407 / 95 96 - 0 • Telefax: 02407 / 95 96 - 9 Internet: www.shaker.de • E-Mail: info@shaker.de

Inhaltsverzeichnis

Zu	samı	nenfassung	7			
Eir	nleitu	ing	9			
1	Röntgenstrahlung als Eingangsgröße					
2	Aus	losung der Photonen-Wechselwirkungen	27			
3 Freie Weglänge der Photonen						
5	4.1 4.2 4.3 4.4	Photonen	43 43 49 50 52			
	5.15.25.3	Streuquerschnitt und Atom-Formfaktor Atom-Formfaktor für chemische Verbindungen und Stoffgemische Auslosung der Streuwinkel	61 66 71			
6		Energie und Impuls von Photonen und Elektronen Differenzieller Streuquerschnitt nach Klein-Nishina Energie nach Klein-Nishina mittels "Inverse Distribution Method"	77 77 83 86			

4 Inhaltsverzeichnis

	6.5	Energie nach Waller-Hartree mittels "Composition and					
		Rejection Technique"	. 97				
	6.6	Methode der Impuls-Approximation	101				
	6.7	Integraler Streuquerschnitt	101				
7	Wechselwirkung von Photonen mit Materie; Photo-						
	abso	orption	107				
	7.1	Auslosung der Elektron-Photon-Kaskade	107				
	7.2	Auslosung des Streuwinkels der K-Schale	121				
	7.3	Auslosung des Streuwinkels der L1-Schale	128				
	7.4	Auslosung des Streuwinkels der L2-Schale	129				
	7.5	Auslosung des Streuwinkels der <i>L3-</i> Schale	141				
8	Wechselwirkung von Elektronen mit Materie; Coulomb-						
	Stre	uung	147				
	8.1	Entscheidung über Einzel- oder Mehrfachstreuung	147				
	8.2	Differenzieller Streuquerschnitt	153				
	8.3	Integraler Streuquerschnitt	155				
	8.4	Auslosung des Streuwinkels	158				
9	Wechselwirkung von Elektronen mit Materie; Møller-						
	Stre	uung	161				
	9.1	Energie und Streuwinkel der Elektronen	161				
	9.2	Differenzieller Streuquerschnitt	172				
	9.3	Integraler Streuquerschnitt	178				
	9.4	Auslosung des Streuwinkels	180				
10	Ausl	osung der Elektronen-Wechselwirkungen	185				
11	lonis	sierung der Luft und lonenstrom im Messfeld	189				
	11.1	Begründung der deterministischen Beschreibung	189				
	11.2	Eigenschaften der Luft	191				
	11.3	Prinzipielle Vorgänge bei der Ionisierung	195				
	11.4	Abschätzung der Ionisierungsrate	196				
	11.5	Ionisierungsrate und differenzieller Energieverlust	198				
	11.6	Grundgleichungen für den Ionisierungsstrom	209				
	11.7	Historie der analytischen Lösungsansätze	215				

Inhaltsverzeichnis 5

		Allgemeine numerische Lösung der Grundgleichungen . Elektrische Feldstärke und Sättigungskurve für $I \approx I_{\rm sat}$. Ionisation bei Berücksichtigung der Diffusion	237 248 257
12	Abla	uf der Gesamt-Simulation	291
Liste der physikalischen Konstanten			
Tabellenverzeichnis			
Abbildungsverzeichnis			
Literaturverzeichnis			

Zusammenfassung

Die Darstellung der physikalischen Grundlagen für die Funktionssimulation der Ionisations-Durchstrahlkammer in der Röntgentechnik umfasst die mathematische Beschreibung der Wechselwirkungen von Photonen mit Festkörpern in einer für die Monte-Carlo-Simulation geeigneten Form. Es werden die Rayleigh- und die Compton-Streuung sowie die Photoabsorption einbezogen. Die bei den letzten beiden Effekten entstehenden Sekundärelektronen werden nach den Gesetzen der Coulomb- und Møller-Streuung auf ihrem Weg und mit ihren Energieänderungen verfolgt. Aufgrund dünner Schichten wird die Theorie der Einzelstreuung angewendet. Das Ziel der Simulation ist die Ermittlung der spektralen Elektronenflussdichte in dem mit Luft gefüllten Messfeld der Ionisationskammer bei Vorgabe eines Energiespektrums der Röntgenstrahlung in Abhängigkeit von der Spannung an der Röntgenröhre. Der Einfluss der Geometrie und der Materialien auf die spektrale Elektronenflussdichte liefert Hinweise für die Konstruktion der Ionisations-Durchstrahlkammer. Mit den Zustandsdaten der Luft und der Energie der Sekundärelektronen wird der differenzielle Energieverlust ermittelt. Letzterer ermöglicht zusammen mit der spektralen Energieflussdichte die Bestimmung der Ionisierungsrate. Die Ionisierung der Luft wird durch ausführliche Behandlung der entsprechenden Grundgleichungen beschrieben, die die Bedingungen für einen linearen Zusammenhang zwischen Ionisierungsrate und Ionenstrom ergeben.