Laserstrahllöten mit glas-keramischen Zusatzwerkstoffen

Von der Fakultät für Maschinenwesen der Rheinisch-Westfälischen Technischen Hochschule Aachen zur Erlangung des akademischen Grades eines Doktors der Ingenieurwissenschaften genehmigte Dissertation

vorgelegt von

Dietrich Faidel

Berichter: Univ.-Prof. Dr.-Ing. Uwe Reisgen

Univ.-Prof. Dr. rer. nat. Reinhard Conradt

Tag der mündlichen Prüfung: 20. Dezember 2011

Dietrich Faidel

Laserstrahllöten mit glas-keramischen Zusatzwerkstoffen

Aachener Berichte Fügetechnik Herausgeber: Prof. Dr.-Ing. U. Reisgen

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: D 82 (Diss. RWTH Aachen University, 2011)

Copyright Shaker Verlag 2012 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8440-1053-4 ISSN 0943-9358

Shaker Verlag GmbH • Postfach 101818 • 52018 Aachen Telefon: 02407 / 95 96 - 0 • Telefax: 02407 / 95 96 - 9 Internet: www.shaker.de • E-Mail: info@shaker.de

Vorwort

Die vorliegende Dissertation entstand während meiner Tätigkeit als wissenschaftlicher Mitarbeiter am Zentralinstitut Technologie (ZAT) des Forschungszentrums Jülich.

Dem Direktor des Instituts für Schweißtechnische Fertigungsverfahren (ISF) der Rheinisch Westfälischen Technischen Hochschule Aachen, Herrn Prof. Dr.-Ing. Uwe Reisgen, danke ich für die ausgezeichnete Betreuung und für die fachlichen Anreize während der Arbeit. Dem zweiten Berichter, Herrn Prof. Dr. rer. nat. Reinhard Conradt danke ich für die sorgfältige Begutachtung der Arbeit.

Für die Betreuung am ZAT möchte ich dem Institutsleiter, Herrn Dr. rer. nat. Ghaleb Natour und Herrn Mihaly Pap danken. Ganz herzlich bedanken möchte ich mich bei meinem Betreuer, Herrn Dr.-Ing. Wilfried Behr, für seine hervorragende sowohl wissenschaftliche als auch menschliche Kompetenz. Frau Dr. rer. nat. Sonja-Michaela Gross danke ich für ihre Unterstützung bei glas-keramischen Fragestellungen und für die sorgfältige Durchsicht der Arbeit. Für das außergewöhnlich angenehme Arbeitsklima und für die tatkräftige Unterstützung möchte ich mich bei allen Mitarbeitern des ZAT herzlich bedanken, besonders bei den Kollegen der Abteilung Füge- und Prüftechnik.

Weiterhin gilt mein Dank den ISF-Kollegen der Abteilung "Strahlschweißen", die mich stets bei den Versuchsdurchführungen im Hause ISF intensiv unterstützt haben.

Für die uneingeschränkte Unterstützung und für alles was ich bis heute erreicht habe bedanke ich mich inständig bei meinen Eltern und bei meinem Zwillingsbruder.

I Inhaltsverzeichnis

I	INHALTSVERZEICHNIS	
II	VERWENDETE FORMELZEICHEN UND ABKÜRZUNGEN	IV
III	TABELLENVERZEICHNIS	IX
IV	ABBILDUNGSVERZEICHNIS	X
V	ABSTRACT	XX
1	EINLEITUNG	1
2	STAND DER TECHNIK	3
2.1	Laserstrahllöten	5
2.2	Konventionelles Löten mit Glasloten	12
2.3	Laser-Glaslöten	15
2.4	Am Forschungszentrum Jülich entwickelte Glaslote	22
2.5	Fügeprozess im elektrisch beheizten Kammerofen	26
2.6	2.6.1 Haftungsmechanismus des Glaslotes auf Metall	27
	2.6.2 Negativer Einfluss der Chromfreisetzung auf das Glaslot	28
2.7	Methoden zur Untersuchung der mechanischen Festigkeit von glasgelöteten Verbindungen	
	2.7.1 Vierpunktbiegeversuch	
	2.1.2 Zugpi didiig	50
3	THEORETISCHE ABSCHÄTZUNGEN	31
3.1	Theoretische Abschätzungen zum thermischen Verhalten in der Fügezone	21
	•	
3.2	Stahl-Glaslot-Wechselwirkung	35

3.3	Spa	nnungszustand	38
4	PR	OBLEMSTELLUNG UND ZIELSETZUNG	40
5	ME	THODEN UND VERSUCHSAUFBAUTEN	42
5.1	Ein	kopplungsarten der Laserstrahlung	42
5.2	Ber	netzungsversuch	42
5.3	Füg	geversuch	44
5.4	Но	chgeschwindigkeitsaufnahmen	45
5.5	Lec	kagetest	46
5.6	Sch	nertest	47
5.7	Gef	ügeuntersuchungen	49
5.8	Füg	geproben und eingesetzte Glaslote	50
5.9	Ver	suchsstände	51
	5.9.1	Nd:YAG-Laser-Versuchsstand	
	5.9.2	Diodenlaserversuchsstand	
	5.9.3	CO ₂ -Laser-Versuchsstand	
6	VEI	RSUCHE	56
6.1	Unt	ersuchung der Kapillarität bei glas-keramischem Lot	56
6.2	Ver	suche mit Nd:YAG-Laser	61
	6.2.1	Einfluss der Streckenenergie auf das Aufschmelzverhalten	
		des binderhaltigen Glaslotes	62
	6.2.2	Direkte Laserstrahleinkopplung	63
	6.2.3	Indirekte Laserstrahleinkopplung	66
6.3	Ent	wicklung geeigneter Fügekonzepte	68
	6.3.1	Fügekonzept mit integrierter Laserbohrung	68
	6.3.2	Fügekonzept mit spanend hergestellten Bohrung	75
6.4	Ver	suche mit Laserstrahlquellen anderer Wellenlängen	81
	6.4.1	Versuche mit CO ₂ -Laser	82
	6.4.2	Versuche mit Diodenlaser	85

6.5	Hers	tellung und Zuführung von Zusatzmaterial	86
		Entwicklung eines Glaslotpulverförderers	
	6.5.2	Herstellung von Glaslotfaser	90
6.6	Zwis	chenfazit	93
7	ANA	LYSE DER FÜGEERGEBNISSE	95
7.1	Gefü	geuntersuchung	95
	7.1.1	Neue Haftungsmechanismen beim Laserlöten	95
	7.1.2	Unterschiede zwischen Laser- und Ofenlöten	96
7.2	Mecl	nanische Festigkeitsuntersuchungen	101
7.3	Strö	mungsdynamische Untersuchungen	105
8	ENT	WICKLUNG EINES REPARATURKONZEPTES	
	FÜR	UNDICHTE SOFC-STACKS	109
8.1	Nd:Y	AG-Laser-Reparaturlötung mit Zusatzmaterial	111
8.2	Ermi	ttlung einer Prozedur zur Spannungsreduktion	
	durc	h geeignete Wärmeführung	114
8.3	Nd:Y	AG-Laser-Reparaturlötung ohne Zusatzmaterial	114
9		/ENDUNGSERPROBUNG DES ENTWICKELTEN REPARATUR- ZESSES	116
10		AMMENFASSUNG	
10	203	AMMENI ACCORC	121
11	AUS	BLICK	124
12	LITE	RATURVERZEICHNIS	125

II Verwendete Formelzeichen und Abkürzungen

Used formulas and abbreviations

A	Fläche m ²
	area
AF8	Glaslotsorte
	Glass sealant
AFC	alkalische Brennstoffzelle alkaline fuel cell
Ag	Silber silver
Al	Aluminium aluminium
Au	Gold
	gold
В	Bor
	boron
Ва	Barium barium
BCAS	Barium-Calcium-Aluminium-Silizium-Glassystem Barium-Calcium-Aluminium-Silicon-Glass-System
BMBF	Bundesministerium für Bildung und Forschung Federal Ministry of Education and Research
С	spezifische Wärmekapazität bei konstantem VolumenJ/kg·K specific heat capacity
С	Kohlenstoff carbon
Ca	Calcium calcium
Cu	Kupfer copper
CW	continuous wave (Dauerstrich-Modus beim Laser) continuous mode

d _{AS}	Anodensubstratdickeµm thickness of anode substrate
d _f	Faserdurchmesserµm fiber diameter
d _K	mittlerer Korndurchmesserµm average grain diameter
DIN	Deutsches Institut für Normung German institute of standardization
EDX	Energiedispersive Röntgenanalyse Energy-Dispersive X-Ray
EN	Europäische Norm European standard
f	Frequenz Hz frequency
F ₂	Fluor fluorine
Fe	Eisen iron
FZJ	Forschungszentrum Jülich Research centre Jülich
h	Blechabstandµm gap of metal sheets
i.d.R.	in der Regel
ISF	Institut für Schweißtechnik und Fügetechnik Welding and Joining Institute
K	Kalium potassium
La	Lanthan lanthanum
Li	Lithium <i>lithium</i>
LSCF	Strontium-und Kobalt-dotierte Lanthanferrit strontium and cobalt doped lanthanferrite
LSM	Strontium-dotiertes Lanthanmanganat strontium doped Lanthanmanganate

MCFC	Karbonatschmelze-Brennstoffzelle Molten Carbonate Fuel Cell
Me	Metall metal
Mg	Magnesium magnesium
MIR	mittleres Infrarot middle infrared
N ₂	Stickstoff nitrogen
Na	Natrium sodium
NA	numerische Apertur numeric aperture
Nd:YAG	Neodym-dotiertes Yttrium-Aluminium-Granat (aktiver Laserkristall) neodymium doped yttrium aluminium garnet (laser crystal)
NIR	nahes Infrarot near infrared
O ₂	Sauerstoff oxygen
Р	LeistungW power
PAFC	Phosphorsäure-Brennstoffzelle Phosphoric Acid Fuel Cell
Pb	Blei lead
PEM	Polymer-Elektrolyt-Membran-Brennstoffzelle Polymer electrolyte membrane fuel cell
Pkw	Personenkraftwagen passenger car
P _{Max}	maximale Laserstrahlleistung
P _{Mittel}	mittlere Laserstrahlleistung
P _{Puls}	PulsleistungW pulse power

Pt	Platin platinum
REM	Rasterelektronenmikroskop scanning electronic microscope
RWTH	Rheinisch-Westfälische Technische Hochschule RWTH Aachen University
Si	Silizium silicon
SMD	Surface-Mounted Devices Surface-Mounted Devices
SOFC	Solid Oxide Fuel Cell (Festoxid- oder Hochtemperatur- Brennstoffzelle) Solid Oxide Fuel Cell
t	Zeits time
t _B	Bohrzeits drilling time
t _{Puls}	Pulsdauerms pulse duration
t _{Strahl}	Strahldauers beam duration
Т	Temperatur°C, K temperature
T _c	Kristallisationstemperatur°C,K crystallisation temperature
T _f	Fügetemperatur°C, K joining temperature
Tg	Glasübergangstemperatur°C, K glass transition temperature
T _{min}	Mindesttemperatur°C, K minimum temperature
Ti	Titan titanium
TU	Technische Universität Technical University

V	Verfahrgeschwindigkeit
V	Vanadium vanadium
wt-%	Gewichtsprozent weight percent
YSZ	Yttriumoxid stabilisiertes Zirkoniumoxid yttrium stabilized zirconia
ZAT	Zentralinstitut für Technologie Central Institute for Technology
Zn	Zink zinc
Zr	Zirkon zirconium
α	Wärmeausdehnungskoeffizient
δ	Dicke der Wand
δΤ/δη	Temperaturgradient normal zu einer Fläche konstanter Temperatur K/m temperature gradient
λ	Wärmeleitfähigkeit
η	ViskositätdPa·s <i>viscosity</i>
ρ	Dichtekg/m³ density
$\dot{q}^{"}$	Wärmestromdichte
Q	Wärmestrom
ф"	Quellstärke, der im Volumenelement produzierten Wärme W volumetric heat generation rate

III Tabellenverzeichnis

List of tables

Tabelle 1:	Wärmeausdehnungskoeffizient eines Glaslotes nach unteschiedlichen Behandlungen [40] Coefficient of thermal expansion of a glass sealant after different treatments [40]	12
Tabelle 2:	Zusammensetzung des AF8-Glases [41] Composition of AF8-glass [41]	
Tabelle 3:	Eigenschaften der Glaslote zum Glasbonden [42] Properties of glass sealants for glass bonding [42]	. 15
Tabelle 4:	Eigenschaften der Glaslote zum Laserfügen von Al ₂ O ₃ -Keramiken [51] Properties of glass sealants for laser joining of Al ₂ O ₃ -ceramics [51]	. 20
Tabelle 5:	Eigenschaften der Glaslote zum Laserfügen von ZrO ₂ -Keramiken [51] Properties of glass sealants for laser joining of ZrO ₂ -ceramics [51]	. 21
Tabelle 6:	Thermische Ausdehnungskoeffizienten einiger kristalliner Phasen, die beim Kristallisieren von Glasloten auftreten oder als Füllstoff einer Glasmatrix zugesetzt werden können [52] Thermal expansion coefficient of some crystalline phases, which occur during crystallisation of glass sealants or which can be used as a filler in a glass matrix [52]	. 23
Tabelle 7:	Eigenschaften und Zusammensetzungen der Glaslote Properties and compositions of glass sealants	. 25
Tabelle 8:	SOFC-Brennstoffzellen, die am FZJ entwickelt wurden [62] Designs of Solid Oxide Fuel Cells developed at FZJ [62]	. 25
Tabelle 9:	Prozessparameter für Benetzungsversuche Process parameters for wetting experiments	. 43
Tabelle 10:	Prozessparameter für Fügeversuche Process parameters for joining experiments	. 45
Tabelle 11:	Technische Eigenschaften des Schertesters Dage Series 4500 [85]	48

Tabelle 12:	Prozessparameter für das Laserstrahlfügen der Scherproben Process parameters for laser beam joining of shear test specimens
Tabelle 13:	Materialeigenschaften von X1CrTiLa22 [81] Material properties of X1CrTiLa22 [81]
Tabelle 14:	Eigenschaften und Zusammensetzungen der Glaslote für den Laserstrahlprozess Properties and compositions of glass sealants for laser beam process
Tabelle 15:	Eigenschaften der Laserstrahlquellen *Properties of laser beam sources
Tabelle 16:	Technischen Daten der SLS 200 CL 60 Laserstrahlquelle Technical specifications of SLS 200 CL 60 laser source
Tabelle 17:	Technischen Daten der Triagon 6000 Laserstrahlquelle Technical specifications of Triagon 6000 laser source
Tabelle 18:	Laserparameter für das Laserlötprozess mit der Laserbohrung Laser parameters for laser sealing process with laser made hole
Tabelle 19:	Laserparameter für das Laserlötprozess mit spanendhergestellter Bohrung Laser parameters for laser sealing process with machined hole
Tabelle 20:	Vor- und Nachteile des amorphes Glaslotes Advantages and disadvantages of amorphous glass sealant
Tabelle 21:	Prozessparameter für Reparaturlötung mit Nd:YAG-Laser und Zusatzglaslot Process parameters for repair sealing with a Nd:YAG-laser and additional glass sealant
Tabelle 22:	Prozessparameter für Reparaturlötung mit Nd:YAG-Laser ohne Zusatzglaslot Process parameters for repair sealing with a Nd:YAG-laser without additional glass sealant
Tabelle 23:	Prozessparameter für das Laserstrahl-Reparaturlöten Process parameters for laser beam repair sealing

IV Abbildungsverzeichnis

List of figures

Bild 1:	Einordnung der Fertigungsverfahren nach DIN 8505 [5] [6] Classification of manufacturing processes according to DIN 8505 [5] [6]	3
Bild 2:	Kapillarwirkung eines metallischen Lotes [9] Capillary action of a metal solder [9]	5
Bild 3:	Laserstrahlgelötete Kupferlackdrähte [16] Laser beam soldered enamelled copper wires [16]	6
Bild 4:	SMD-Laserstrahllötung mit (links) und ohne (rechts) Temperaturregelung [18] SMD-Laser Beam Soldering with (left) and without (right) temperature control [18]	7
Bild 5:	Temperaturverlauf a) ohne und b) mit Pyrometerregelung [19] Temperature profile a) without and b) with pyrometer control [19]	7
Bild 6:	Schematische Darstellung der Strahlpropagation im Lotdepot (geometrische Optik) [20] Schematic diagram of beam propagation in solder depot (geometric optics) [20]	8
Bild 7:	Leistungs-Zeit-Profil zum Laserstrahl-Weichlöten mit Lotdepots in Pastenform [20] Power-Time-Profile for laser beam soft-soldering with solder depot as a paste [20]	g
Bild 8:	Laserlötnaht an einer Pkw-Kofferraumklappe [22] Laser beam seam at a passenger car's rear lid [22]	10
Bild 9:	Schematische Darstellung des Solder Bumping Prozesses [23] Schematic diagram of Solder Bumping Process [23]	11
Bild 10:	Laserlötnaht mit Glaslot an einem Al ₂ O ₃ -Sensorgehäuse [43] Laser beam seam with glass sealant on an Al ₂ O ₃ -Sensor enclosure [43]	16
Bild 11:	Diodenlaserlöten von Keramikbauteilen [46] Diode laser soldering of ceramic parts [46]	18

Bild 12:	Laserstrahlgelöteten Glasbauteile [3] Laser beam soldered glass parts [3]	19
Bild 13:	Laserlötnaht an einem Solarreceiver [50] Laser beam seam on a solar receiver [50]	20
Bild 14:	Glassorten: Zusammenhang zwischen Erweichungstemperatur (bezieht sich auf Viskositätsniveau von $\log \eta \approx 13$ (Glasübergang) bis $\log \eta \approx 11$ (dilatometrischer Erweichungspunkt) η in dPa·s) und Wärmeausdehnungs koeffizienten [52] Glass grades: correlation between softening temperature (refer to viscosity level from $\log \eta \approx 13$ (glass transition) to $\log \eta \approx 11$ (dilatometric softening point) η in dPa·s) and thermal expansion coefficient [52]	22
Bild 15:	Ofenfügezyklus für SOFC-Stacks Furnace joining cycle for SOFC-Stacks	26
Bild 16:	Bildung von Dendriten und galvanische Korrosion [58] Formation of dendrites and galvanic corrosion [58]	28
Bild 17:	Prinzipielle Darstellung des Vierpunktbiegeversuchs [76] Principle diagram of four-point-bending-test [76]	29
Bild 18:	Zugtest und im Ofen gefügte Zugprobe Tensile test and tensile specimen joined in a furnace	30
Bild 19:	Einkopplungsarten der Laserstrahlung Possibilities of coupling in the laser radiation	31
Bild 20:	Transmission der Laserstrahlung im Glas [77] Transmission of the laser radiation in glass [77]	32
Bild 21:	Wechselwirkung der NIR-Laserstrahlung mit Glaslot und Stahl bei direkter Einkopplung Interaction of NIR-laser-radiation with glass sealant and steel by direct coupling in	33
Bild 22:	Wechselwirkung der MIR-Laserstrahlung mit Glaslot und Stahl bei direkter Einkopplung Interaction of MIR-laser-radiation with glass sealant and steel by direct coupling in	33
Bild 23:	Wechselwirkung der MIR/NIR-Laserstrahlung mit Glaslot und Stahl bei indirekter Einkopplung Interaction of MIR/NIR-laser-radiation with glass sealant and steel by indirect coupling in	34

Bild 24:	Wellenlängenabhängigkeit des Reflexionsgrads von Metallen [79] Reflectivity of metals as a function of wavelength [79]	35
Bild 25:	Energiebilanz am Kontrollvolumen eines ruhenden Systems [80] Energy balance on control volume of a static system [80]	36
Bild 26:	Temperaturbilanz am Stahlblech bei indirekter Laserstrahleinkopplung Temperature balance on a steel sheet with indirect coupling in of the laser radiation	37
Bild 27:	Vereinfachte Darstellung der Spannungen im Glaslot Simplified diagram of strains in glass sealants	39
Bild 28:	a) Blechverformung bei punktueller Lasererwärmung b) Eigenspannungen in einer unendlichen Platte [83] a) sheet deformation as a result of selective laser heating b) residual stresses in an infinite plate [83]	39
Bild 29:	Mögliche Varianten der Laserstrahleinkopplung Possible variants of coupling in of the laser radiation	42
Bild 30:	Glaslotpulverdepot auf einem Blech vor und nach Laserstrahl- bearbeitung (a: Benetzungswinkel, h: Höhe der Glaslotlinse) Glass sealant depot on a sheet before and after laser beam treatment (a: contact angle, h: height of the sealant nugget)	43
Bild 31:	Prinzipielle Darstellung des Fügeversuches von zwei Blechen (Endzustand) Principle diagram of a joining experiment with two metal sheets (final state)	44
Bild 32:	Schematische Darstellung des Aufbaus für Hochgeschwindigkeitsaufnahmen Schematic diagram of high speed movie set-up	45
Bild 33:	Helium-Lecktestprobe Helium-leak-test sample	46
Bild 34:	Prinzipielle Darstellung des Schertest Principle diagram of shear test	47
Bild 35:	Prinzipielle Darstellung des Schertests mit ofengefügter Probe Principle diagram of a furnace joined shear test sample	48
Bild 36:	Prinzipielle Darstellung des Schertests mit lasergefügter Probe	49

Bild 37:	Probeneinspannung Clamping for the samples
Bild 38:	Nd:YAG-Laserbearbeitungsstation Nd:YAG-laser working station
Bild 39:	Diodenlaserbearbeitungsstation Diode laser working station
Bild 40:	CO ₂ -Laserbearbeitungsstation CO ₂ -laser working station
Bild 41:	Versuchsaufbau beim Kapillarkraftversuch Experimental layout of capillarity experiment
Bild 42:	Lufteinschlüsse am Anfang der Kapillare Air inclusions in the capillary
Bild 43:	Vorversuche: Steighöhe des Glaslotes in Abhängigkeit von der Spaltbreite im Lötspalt Pilot test: capillary head of glass sealant according to gap width
Bild 44:	a) Kapillarenbündel (Ansicht von oben), b) Glaslotkugeln im Tiegel a) Capillary batch (view from the top), b) Glass sealant balls in a crucible
Bild 45:	Steighöhe des Glaslotes abhängig von Spaltbreite und Temperatur Capillary head of glass sealant according to gap width and temperature
Bild 46:	Kapillarwirkung bei unterschiedlichen Temperaturen und Spaltbreiten Capillarity according to different gap width and temperatures60
Bild 47:	Viskosität in Abhängigkeit von der Löttemperatur (Glaslot H) Viscosity according to sealing temperature (sealant H)
Bild 48:	Steighöhe in Abhängigkeit von Spaltbreite, Temperatur und Viskosität Capillary head against gap width, temperatures and viscosity
Bild 49:	Einfluss der Streckenenergie auf das Aufschmelzverhalten des binderhaltigen Glaslotes Influence of the energy input per unit length on melting behaviour of glass sealant containing binder

Bild 50:	a) Glaslotkugel auf einem zu kalten Blech; b) Benetzung des Bleches bei exakter Benetzungstemperatur a) Glass sealant ball on a metal sheet, wetting temperature is not reached b) wetting of the sheet at definite wetting temperature	63
Bild 51:	Verhalten der Glaslote bei gleicher Laserstrahlbearbeitung Different behaviour of glass sealants by the same laser beam treatment	63
Bild 52:	a) Verzug des Blechs bei Glaslot B; b) minimaler Verzug bei Glaslot H a) high distortion of the sheet with sealant B; b) low distortion with sealant H	64
Bild 53:	Verbesserung der Benetzung durch Metallpulverzugabe Improvement of wetting by metal powder	64
Bild 54:	Riss bei einem Metalleinschluss und bei einem kristallinen Einschluss Cracks caused by metal and by crystalline inclusion	65
Bild 55:	Scherfestigkeit der Glaslotproben bei Metallpulverzumischung Shear strength of glass sealant samples with metal powder	66
Bild 56:	Prinzipielle Darstellung der indirekten Einkopplung bei zwei Blechen Schematic diagram of indirect coupling in of laser radiation with two sheets	67
Bild 57:	Beschädigtes oberes Blech bei indirekter Laserstrahleinkopplung Damage of the upper sheet caused by indirect coupling in of the laser beam	67
Bild 58:	Schema des Laserlötprozesses mit der Laserbohrung [88] 1) Erwärmung des Glaslotes, 2) Aufschmelzung des Glaslotes, 3) Bohren des oberen Bleches, 4) Fließen des Glaslotes, 5) Nachwärmen des Glaslotes, 6) Verbindung der beiden Bleche Schematic diagram of the laser sealing process with laser made hole [88] 1) heating of glass sealant, 2) melting of glass sealant, 3) drilling of the hole, 4) flowing of glass sealant, 5) post heating of glass sealant, 6) joining of both metal parts	69
Bild 59:	Oberseite des oberen Bleches mit einer lasererzeugten Bohrung	70

Bild 60:	Fügefehler beim Laserlötprozess mit der Laserbohrung (Unterseite des oberen Bleches): a) Metallspritzer; b) zu kleiner Bohrungsdurchmesser; c) Glaslot fließt nicht bis zum unteren Blech; d) Anschweißung des oberen Bleches an das untere Joining defects by laser sealing process with laser made hole (rear side of upper sheet): a) metal spatter; b) small diameter of the hole; c) glass sealant does not flow to the lower sheet; d) upper sheet is welded to lower sheet
Bild 61:	a) lasererzeugte Bohrung (Blechunterseite); b) Glaslottorus auf der Oberseite des Bleches a) laser made hole (rear side); b) glass sealant torus on the upper side
Bild 62:	Torus aus Glaslot rund um die durchgehende Laserbohrung Glass sealant torus around the laser made hole
Bild 63:	Aufgebrochene Probe mit lasererzeugten Bohrung (oberes Blech) Opened out specimen with laser made hole (upper metal sheet)
Bild 64:	Röntgenaufnahme einer gelöteten Probe mit laserhergestellter Bohrung X-ray photograph of a joined sample with laser made hole
Bild 65:	Schematische Darstellung des Prozesses mit spanend hergestellter Bohrung Schematic diagram of the process with machined hole
Bild 66:	Glaslot in der Kavität (vor und nach der Bearbeitung) Glass sealant in the cavity (before and after laser treatment)
Bild 67:	Fügefehler aufgrund niedriger Temperatur des unteren Bleches Defect caused by too low temperature of the lower metal sheet
Bild 68:	Fügefehler aufgrund der zu niedrigen Temperatur des oberen Bleches Defect caused by too low temperature of the upper metal sheet
Bild 69:	Schematische Darstellung der Kräfte: a) Glaslot in einer Bohrung und b) eine Glaslotraupe um ein rundes Blech auf einem ebenen Blech Schematic diagram of force state: a) glass sealant in a hole and b) a glass sealant bead around a round part on a plate without hole
Bild 70:	Beschädigung des unteren Bleches bei zu wenig Glaslotpulver Damage of the lower sheet caused by a small amount of glass powder

Bild 71:	Zusätzliches Glaslotdepot vor und nach der Laserstrahlbearbeitung Additional glass sealant depot before and after laser beam treatment	80
Bild 72:	Vergleich: Lötung ohne und mit Zusatzglaslot Comparison: Joining without and with additional glass sealant	80
Bild 73:	Glaslotfläche ohne und mit Zusatzglaslot Glass sealant area without and with additional glass sealant	81
Bild 74:	Glass sealant nugget after CO ₂ -laser treatment	82
Bild 75:	Bruch und Risse in der Glaslotlinse bei CO ₂ -Laserbearbeitung Fracture and cracks in the glass nugget after CO ₂ -laser treatment	83
Bild 76:	Versagensarten bei voroxidierten Blechen bei CO ₂ -Laserbearbeitung a) Abreißen der Oxidschicht; b) Bruch in der Glaslotlinse Failure modes with peroxidised sheets by CO ₂ -laser treatment a) separation of the oxide layer; b) Fracture in the glass nugget	84
Bild 77:	Glassotlinse nach der direkten Diodenlaserbearbeitung Glass sealant nugget after direct diode laser treatment	85
Bild 78:	Vibrations-Pulverförderer (Laserstrahl senkrecht zum Blech) Vibration-powder-feeder (laser beam vertically to the plate)	86
Bild 79:	Vibrations-Pulverförderer (Laserstrahl schräg zum Blech) Vibration-powder-feeder (laser beam inclined to the plate)	87
Bild 80:	Vibrations-Pulverförderer Vibration-powder-feeder	88
Bild 81:	Massenstrom der unterschiedlichen Glaslotpulver Mass flow of different glass sealants	89
Bild 82:	Glassotraupen bei gleichen Bearbeitungsparametern Glass sealant beads generated with the same parameters	89
Bild 83:	Prinzipskizze der laserunterstützten Glasfaserherstellung [94] Principle diagram of laser-based glass fibre manufacturing [94]	90
Bild 84:	Thermografieaufnahme einer Glaslotkugel (Laserstrahl und Faser sind schematisch dargestellt) Thermograph image of a glass sealant ball (laser beam and fibre are illustrated schematically)	91
Bild 85:	Zuführung von laserunterstützt hergestellten Glasfaser [95] Feeding of laser made glass fibre [95]	92

Bild 86:	Einfluss der Metallschmelze auf die Lötung Influence of the metal flux on joining	95
Bild 87:	Porosität des Glaslotes nach a) Ofenfügung b) Nd:YAG-Laserfügung c) Diodenlaserfügung d) CO ₂ -Laserfügung Porosity of glass sealant bead after a) furnace treatment b) Nd:YAG-laser treatment c) diode laser treatment d) CO ₂ -laser treatment	96
Bild 88:	REM-Aufnahme einer Ofenfügung, die nachträglich mit dem Laserstrahl aufgeschmolzen wurde SEM-image of a furnace joining which was additionally melted with the laser beam	97
Bild 89:	EDX-Analyse der Reaktionszone zwischen Stahl und Glaslot bei Laserstrahlbearbeitung EDX-analysis of reaction zone between steel and glass sealant by laser beam treatment	98
Bild 90:	EDX-Analyse der Reaktionszone Stahl/Glaslot bei Ofenfügung EDX-analysis of reaction zone steel/glass sealant by furnace treatment	99
Bild 91:	Im Glaslot aufgelöste Oxidschicht Oxide layer dissolving in glass sealant	100
Bild 92:	Festigkeit unterschiedlicher Glassorten [87] Strength of different glass kinds [87]	100
Bild 93:	Vergleich Zug- und Scherversuche Comparison of tensile and shear test	102
Bild 94:	Glaslotraupe nach einem Scherversuch Glass sealant bead after shear test	103
Bild 95:	Anschlag für die Krafteinleitung beim Schertest Metal bar for force transmission during shear tests	103
Bild 96:	Schertestergebnisse mit Metallbalken Shear test results with metal bar	104
Bild 97:	Schertestergebnisse der lasergelöteten Proben mit laserhergestellten Bohrung Shear test results of laser joined samples with laser-made hole	105
Bild 98:	Thermische Konvektion im Glaslot bei verschiedenen Laserstrahl- quellen: a) Nd:YAG-Laser; b) CO ₂ -Laser Thermal convection: a) with Nd:YAG-laser; b) with CO ₂ -laser	

Bild 99:	Hochgeschwindigkeitsaufnahmen beim Einsatz eines Nd:YAG- Lasers a) Torusausbildung, b) Glaslotkugel, c) Konvektion von außen nach innen d) Umkehrung der Konvektionsrichtung High speed images by application of a Nd:YAG-laser a) torus formation; b) glass sealant ball; c) convection from outside to inside; d) converse of convection direction	107
Bild 100:	Hochgeschwindigkeitsaufnahmen beim Einsatz eines CO ₂ -Lasers a) mehrere kleine Kugeln; b) Glaslotkugel; c) Konvektion von innen nach außen und Entgasung; d) Benetzung (keine Umkehrung der Konvektionsrichtung) High speed images by application of a CO ₂ -laser a) several small balls; b) glass sealant ball; c) convection from inside to outside and degassing; d) wetting (no reverse of convection direction)	108
Bild 101:	Reparaturlötung mit und ohne Zusatzglaslotpulver Repair sealing with and without additional glass sealant	110
Bild 102:	a) Ansicht einer Laser-Reparaturlötung mit Zusatzglaslotpulver b) aufgebrochene Laserreparaturprobe a) Laser repair sealing with additional glass sealant b) opened out laser repaired sample	112
Bild 103:	Riss in der reparierten Naht bei erneuter Laserstrahleinkopplung Crack in a sealed seam by a further coupling in of the laser beam	113
Bild 104:	Rissverlauf bei Reparaturlötung mit Zusatzglaslot Crack propagation by repair sealing with additional sealing	113
Bild 105:	Strategie zur Minimierung der Rissbildung Strategy for minimising of crack formation	114
Bild 106:	Nd:YAG-Laser-Reparaturlötung ohne Zusatzglaslotpulver (aufgebrochene Probe) Nd:YAG-laser-repair-sealing without additional glass sealant (opened out specimen)	115
Bild 107:	Reparaturlötung an einem SOFC-Stack a) stehend ohne Zusatzmaterial; b) liegend mit Zusatzglaslotpulver Repair sealing at a SOFC-stack: a) vertical position without additional sealant: b) horizontal position with additional sealant.	116

Bild 108:	Gesamtansicht der Reparaturlötungen an einer SOFC-Kassette mit Zusatzwerkstoff: a) mit Zusatzglaslotpulver; b) mit Glaslotfaser General view of repair sealing at a SOFC-cassette with additional glass sealant: a) with additional powder; b) with glass fibre
Bild 109:	Querschliffe der Reparaturlötungen an einer SOFC-Kassette mit Zusatzwerkstoff: a) mit Zusatzglaslotpulver; b) mit Glaslotfaser Cross-section polish of a repair sealing at a SOFC-cassette with additional glass sealant: a) with additional powder; b) with glass fibre 119
Bild 110:	Gesamtansicht der Reparaturlötungen an einer SOFC-Kassette ohne Zusatzwerkstoff: a).geringe Anschmelzung bei 400 µm Spaltbreite b) starke Anschmelzung bei 200 µm Spaltbreite General view of repair sealing at a SOFC-cassette without additional glass sealant: a) slight melting by 400 µm gap; b) strong melting by 200 µm gap120
Bild 111:	Querschliffe der Reparaturlötungen an einer SOFC-Kassette ohne Zusatzwerkstoff: a) geringe Anschmelzung bei 400 µm Spaltbreite b) starke Anschmelzung bei 200 µm Spaltbreite Cross-section polish of a repair sealing at a SOFC-cassette without additional material: a) slight melting by 400 µm gap; b) strong melting by 200 µm gap

V Abstract

Laser beam soldering with glass-ceramic filler materials

The advancing technical progress in production technology gives great demands on novel joining techniques. Innovative joining processes have to be developed to enable joining of up-to-date materials. Often not only a robust joint of dissimilar materials must be guaranteed. Electrical insulation at a high operation temperature, vacuum tightness or inert behaviour in aggressive atmospheres are several specifications which need to be fulfil in parallel. To meet the requirements, new tools and technologies have to be developed which allow new joining solutions. The economic aspects resulting from new process variants are not less important e.g. cost minimization [1].

Even though being used since several decades, the laser allows new process variants, which were not realizable before or just with high complexity. Due to its excellent focusability and exact power adjustment the laser energy can be applied and localized selectively. Because of the fast heating, the heat affected zone is reduced considerably. This has a positive influence on process and joining results.

Laser beam soldering with glass sealants is one of these innovative processes. Due to the application of laser, the heating of a whole unit can be avoided in contrary to the conventional furnace process. Since several years laser beam soldering with glass sealants is used for joining glasses and ceramics to produce high temperature resistant and chemically stable joints. Examples are packaging of sensors [2] or gas tight packaging of micro devices and electronic components [3]. Joining of metal parts with glass sealants is widely-used in SOFC-technology, but limited to the furnace technology. During the joining process a SOFC stack consisting of several repeating units with metallic interconnects and frames with glass sealant applied onto is joined for several hours simultaneously under constant pressure in a high temperature furnace at 800 - 950 °C

Central Institute for Technology (ZAT) of Forschungszentrum Jülich GmbH develops the technology of fuel cell applications for stationary and mobile use is. Of crucial importance is the use of self developed glass sealants as joining and insulation medium. The properties of sealants are adjusted to the properties of used materials (X1CrTiLa22). Important parameters are glass transition temperature and coefficient of thermal extension. The transition temperature of the sealant should be considerably lower than the melting temperature of steel and both coefficient of thermal expansion should be adjusted

to each other. Already developed sealants are suited perfectly for furnace technology and can be taken as state-of-art for manufacturing of SOFC stacks.

Leakages which may occur during furnace joining make a stack unusable. A rejoining of the crystalline glass sealant after the initial joining is impossible because of presumable damage of the stack due to increased rejoining temperatures. The laser beam offers new applications for repair. Two possibilities are evaluated within the scope of this research study. The repair applications can be performed with and without additional glass sealant. Both variants show a considerable improvement of the leakage from 10⁻¹ mbar·l/s to 10⁻⁶ mbar·l/s. So it is possible to repair untight external seals to separate fuel gas and oxygen and to avoid the danger of oxyhydrogen explosion.

It was shown that laser beam soldering with glass sealants can be used for joining metal parts successfully. The laser sources within NIR-range (Nd:YAG, Diode, Fibre) are better applicable for joining glass ceramics with metals than laser sources within MIR-range (CO₂).