Ein neues Modell zur energiebewussten verteilten Verarbeitung in drahtlosen Sensornetzen

Dissertation

zur

Erlangung des akademischen Grades doctor rerum politicarum (Dr.rer.pol.) der Wirtschafts- und Sozialwissenschaftlichen Fakultät der Universität Rostock

vorgelegt von

Birger Lantow geb. am 16.04.1977 in Rostock

aus Rostock

Rostock, 30. September 2010

Gutachter: Prof. Dr.-Ing. Hans Röck, Universität Rostock Prof. Dr. Rafael Weißbach, Universität Rostock

Tag der Verteidigung: 07. Dezember 2010

Technische Informatik

Birger Lantow

Ein neues Modell zur energiebewussten verteilten Verarbeitung in drahtlosen Sensornetzen

Shaker Verlag Aachen 2012

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: Rostock, Univ., Diss., 2010

Copyright Shaker Verlag 2012 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8440-0880-7 ISSN 1436-882X

Shaker Verlag GmbH • Postfach 101818 • 52018 Aachen Telefon: 02407 / 95 96 - 0 • Telefax: 02407 / 95 96 - 9 Internet: www.shaker.de • E-Mail: info@shaker.de

Zusammenfassung

Das größte Problem bei der Erschließung neuer Anwendungsfelder für drahtlose Sensornetze (Wireless Sensor Networks = WSN) ist die Knappheit der Ressource Energie. Dies ist vor allem in einem begrenzten Energievorrat innerhalb der einzelnen Knoten eines WSN begründet, dessen Aufbrauchen das Ende der Lebensdauer des jeweiligen Knotens markiert. In anderen Fällen ist die Leistung der Energieversorgung der Sensorknoten zumindest beschränkt. Energieeffizienz stellt so ein wichtiges Designziel für Hard- und Software im Bereich der WSN dar. Diese Arbeit untersucht auf Basis eines neu entworfenen Modells zur Beschreibung des Energieverbrauchs verteilter Verarbeitungsvorgänge in WSN mögliche Verteilungen von Verarbeitungslast unter dem Aspekt der Energieeffizienz. Die Energieeffizienz drückt sich dabei in der erreichten Lebensdauer des WSN als System im Bezug auf den bereitgestellten Anfangsenergievorrat aus. Neben der Erarbeitung von Entwurfsprinzipien für die Implementierung von Protokollen zur Umsetzung energieeffizienter Lastverteilungen, werden auch für ein deterministisches Modell optimale Lastverteilungen und ihre Bestimmung dargestellt. Dazu zählt u. a. der Vergleich mit gesamtenergieminimalen Lastverteilungen. Da Lastverteilungen in WSN i. d. R. laufend und unter unvollständiger Information zu treffen sind, wird auch die Güte der gefundenen Verteilungen innerhalb solcher Online-Entscheidungsprozesse untersucht. Hier werden vor allem Ansätze für weitergehende Forschungsaktivitäten formuliert.

Abstract

The limited resource energy is the biggest obstacle for the introduction of new application fields to WSN (Wireless Sensor Networks). Generally, this is caused by a limited amount of energy available to each node of a WSN during the nodes' lifetime. In other cases, the power supply for WSN-nodes is highly limited. Thus, Energy-efficiency is an important design goal of WSN hard- and software. This thesis introduces a new modell for the description of distributed data processing energy consumption. Based on this model, distributions of processing load are discussed with respect to energy efficiency. Here, energy efficiency is defined as the ratio between reached system lifetime and initial energy amount supplied to the sensor nodes. Design principles are developed for the implementation of protocols which generate energy efficient processing load distributions. For a deterministic version of the energy consumption model, optimal processing load distributions that minimize total energy consumption. Generally, decisions about processing load distribution in WSN have to be done perpetually and under insufficient information. Therefore, the quality of found optimal distributions for the deterministic model is evaluated for this process of online decisions. Based on this, future research activities on the topic are discussed.

Inhaltsverzeichnis

1.	Einle	eitung u	Ind Motivation	1	
	1.1.	Forsch	ungsaktivitäten	4	
	1.2.	Zielset	zung und Aufbau der Arbeit	6	
2.	Ener	giebew	usste Informationsverarbeitung in WSN und MANETs	9	
	2.1.	Definit	tion und typische Eigenschaften von WSN und MANET	9	
		2.1.1.	MANET	9	
		2.1.2.	WSN	11	
	2.2.	Archite	ektur von WSN	15	
	2.3.	Energi	ebewusste Protokolle für WSN	19	
		2.3.1.	Komponentenebene	20	
		2.3.2.	Knotenebene	20	
		2.3.3.	Verarbeitungsfunktionalität auf Netzwerkebene	24	
3.	Mod	ell zur E	Beschreibung der Energieverbräuche	27	
	3.1.	Verarb	eitungskosten	27	
	3.2.	Übertragungskosten			
	3.3.	. Wertbestimmung und Wertebereiche der Kostenparameter			
		3.3.1.	Übertragungskosten	34	
		3.3.2.	Verarbeitungskosten	43	
		3.3.3.	Wertebereiche	44	
		3.3.4.	Skalierte Darstellung	46	
	3.4.	Ereign	isgenerierender Prozess und Modellparameter im Zusammenhang	46	
		3.4.1.	Modellparameter im Zusammenhang	50	
		3.4.2.	Unabhängigkeit vs. Abhängigkeit der Zufallsvariablen	53	
	3.5.	Optimi	ierungsziel	60	
		3.5.1.	D-Modell	65	
		3.5.2.	Z-Modell	66	
	3.6.	Zusam	menfassung und weiteres Vorgehen	70	

4.	Verte	eilte Verarbeitung auf V_E^{min} im <i>D-Modell</i>	77
	4.1.	Lösungen für $l_H = 0$	77
		4.1.1. Direkte Nachbarschaft von <i>S</i> und <i>T</i> ($V_H = \emptyset$)	78
		4.1.2. Beschränkung von V_H auf Weiterleitungsaufgaben $(l_H = 0, V_H > 0)$.	82
	4.2.	All gemeines Modell für die Verteilung auf V_E^{min} $(l_H \ge 0, V_H \ge 0) \dots \dots \dots$	87
		4.2.1. Gleiche lokale Energieverbräuche der Weiterleitungsknoten	91
		4.2.2. Gleiche lokale Energieverbräuche in allen Rollen (S, H und T)	93
		4.2.3. Qualitative Aussagen zur Lage des Optimums bei $l_H > 0$	98
	4.3.	Zusammenfassung	105
5.	Erwe	eiterung von V_E im <i>D-Modell</i>	109
	5.1.	Beschränkung von V_H auf Weiterleitungsaufgaben $(l_H = 0, V_H > 0)$	110
	5.2.	Verteilung von Verarbeitungslast auf V_H ($l_H > 0$, $ V_H > 0$)	113
		5.2.1. Alternative 1: $L^* = (0; M; 0)$	115
		5.2.2. Alternative 2: $L* = (0; M - l_T; l_T)$	125
		5.2.3. Alternative 3: $L* = (l_S; M - l_S; 0) \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots$	131
		5.2.4. Lastverteilungen für die direkte Nachbarschaft von S und T	137
		5.2.5. Optimale Lastverteilungen auf V_H bei gegebenem Pfad der Länge k	147
	5.3.	Pfadwahl und pfadindividuelle Verteilungen	151
		5.3.1. Restriktionen	151
		5.3.2. Kriterien	153
		5.3.3. Pfadindividuelle Lastverteilungen	157
	5.4.	Nicht-disjunkte Pfade	159
	5.5.	Zusammenfassung	164
6.	Sono	derfälle und weiterführende Fragestellungen des D-Modells	167
	6.1.	Einheit von S und T	168
	6.2.	Mehrere Knoten in <i>S</i>	173
	6.3.	Modell mit klassischer Senke	174
	6.4.	Modell ohne Aggregation ($Q = 1$)	178
		6.4.1. Optimale Verteilung auf V_E^{min}	178
		6.4.2. Optimale Verteilung bei Erweiterung von V_E^{min}	180
	6.5.	Einfluss atomarer Dateneinheiten und ein Algorithmus zu ihrer Verteilung	186
	6.6.	Sensitivität gegenüber Schwankungen in den Kostenparametern	193
7.	Frag	estellungen und Ansätze für das Z-Modell	199
	7.1.	Erwartete Systemlebensdauer und Lastverteilungen auf V_E^{min}	200

	7.2.	Erwartete Systemlebensdauer und Lastverteilungen bei einer Erweiterung von V_E	204
	7.3.	Garantierte Systemlebensdauer	207
	7.4.	Zusammenfassung	213
8.	Zusa	mmenfassung und Ausblick	215
A.	Verw	endete Stützwerte	221
в.	Spezi	fikation MSB430	223

Abbildungsverzeichnis

2.1.	Turischer Aufleu singe Seneralingten für WSN (nach [Hands 2006, S. 15])	
	Typischer Aufbau eines Sensorkholens für WSN (nach [Handy 2006, S. 15])	13
2.2.	Datenfluss bei <i>Route Aggregation</i> (nach [Krishnamachari u. a. 2002])	19
3.1.	Gleiche Übertragungskosten im 1-dimensionalen Raum	32
3.2.	Gleiche Übertragungskosten im 2-dimensionalen Raum	33
3.3.	Gleiche Übertragungskosten im 3-dimensionalen Raum	33
3.4.	Betrachtete Kombinationen von S und T für ein Ereignis:	
	a) 1 <i>S</i> -1 <i>T</i> -Grundmodell b) redundante <i>S</i> c) disjunkte S	47
3.5.	Beziehungen der Modellvariablen	51
3.6.	Beziehungen der Modellvariablen bei reduzierter Abhängigkeit	54
3.7.	Beziehungen der Modellvariablen bei unabhängiger Betrachtung einer Ereignis-	
	klasse (Z-Modell)	56
3.8.	Beziehungen der Modellvariablen bei unabhängiger Betrachtung der Ereignisklas-	
	se und ortsfestem Ereigniseintritt (<i>D-Modell</i>)	58
3.9.	Parameterraum, für den $l*_S < M$ auf Basis des Verlaufs von E_S möglich sind \therefore	76
4.1.	Verläufe der rollenspezifischen Energieverbräuche mit $l_H = 0$ am Beispiel: $Q =$	
	$0, 8, C_{comp} = 2, 9, C_{tx} = 1, 2$	78
4.2.	Relativer Anteil der an T verarbeiteten Daten für $V_H = \emptyset$	80
4.3.	Relativer Vorteil ΔE_0^r durch teilweise Verarbeitung an $T(V_H = \emptyset)$	81
4.4.	Parameterbereich für den sich bei $l_H = 0, V_H > 0$ in der Optimallösung Abwei-	
	chungen vom Gesamtenergieminimum $(l_S = M)$ und vom $V_H = \emptyset$ -Fall ergeben .	85
4.5.	Relativer Anteil der an T verarbeiteten Daten für $l_H = 0, V_H > 0$	85
4.6.	Relativer Vorteil ΔE_0^r durch teilweise Verarbeitung an $T(l_H = 0, V_H > 0)$	86
4.7.	Verläufe von $E_H = E_S$ und $E_T = E_S$ im l_H, l_S -Graph	95
4.8.	Lastverteilungen und die resultierenden Energieverbräuche Beispiel: $Q = 0, 8$,	
	$C_{comp} = 2,9, C_{tx} = 1,2, k = 6$	98
4.9.	Differenz der relativen Entlastungen der Quelle <i>S</i> bei $l_H = 0$ und bei $l_H > 0$ ($k =$	
	16)	100

4.11	. Schranken für den relativen Anteil der nicht an S verarbeiteten Daten für $l_H >$	
	$0, V_H > 0$	103
4.12	. Relativer Vorteil ΔE_0^r durch teilweise Verarbeitung an <i>H</i> und <i>T</i> . $l_H > 0$, $ V_H > 0$	104
4.13	. Obere Schranke für den relativen Vorteil ΔE_0^r durch teilweise Verarbeitung an <i>H</i>	
	und $T. l_H > 0, V_H > 0$	105
4.14	. Relativer Anteil der an T verarbeiteten Daten für $V_H = \emptyset$	106
4.15	. Relativer Vorteil ΔE_0^r durch teilweise Verarbeitung an $T(V_H = \emptyset)$	106
4.16	. Gesamtansicht: relativer Anteil der nicht an S verarbeiteten Daten für $l_H \ge 0, V_H >$	
	$0, k = 16 \qquad \dots \qquad $	107
4.17	. Gesamtansicht: Relativer Vorteil ΔE_0^r durch teilweise Verarbeitung an <i>H</i> und <i>T</i> .	
	$l_H \ge 0, V_H > 0, k = 16$	108
5.1.	Verläufe der rollenspezifischen Energieverbräuche mit $l_H = 0$ am Beispiel für $a =$	
	1 und $a = 2$: $Q = 0, 8, C_{comp} = 2, 9, C_{tx} = 1, 2$	111
5.2.	Schranken der Pfadzahl <i>a</i> für die Verteilung $L^* = (0; M; 0)$	118
5.3.	Minimale Pfadlänge k_u für das Erreichen einer bestimmten Pfadzahl a im Opti-	
	mum für die Verteilung $L^* = (0; M; 0)$	121
5.4.	Relativer Vorteil ΔE_0^r durch Verarbeitung auf mehreren Pfaden	125
5.5.	Obere Schranke der Pfadzahl a_{big} für die Verteilung $L*=(0; M-l_T; l_T)$	127
5.6.	Minimale Pfadlänge k_u für das Erreichen einer bestimmten Pfadzahl a im Opti-	
	mum für die Verteilung $L^* = (0; M - l_T; l_T)$	130
5.7.	Untere Schranke der Pfadzahl a_{low} für die Verteilung $L* = (l_S; M - l_S; 0)$	133
5.8.	Obere Schranke der Pfadzahl a_{big} für die Verteilung $L* = (l_S; M - l_S; 0)$	134
5.9.	Minimale Pfadlänge k_u für das Erreichen einer bestimmten Pfadzahl a im Opti-	
	mum für die Verteilung $L^* = (l_S; M - l_S; 0)$	136
5.10	. Untere Schranke der Pfadzahl a_{low} für die Verteilung $L* = (0; M - l_T; l_T)$ bei	
	direkter Nachbarschaft von S und T	139
5.11	. Obere Schranke der Pfadzahl a_{big} für die Verteilung $L* = (0; M - l_T; l_T)$ bei	
	direkter Nachbarschaft von S und T	140
5.12	. Minimale Pfadlänge k_u für das Erreichen einer bestimmten Pfadzahl a im Opti-	
	mum für die Verteilung $L^* = (0; M - l_T; l_T)$ und direkter Nachbarschaft von S	
	und <i>T</i>	141
5.13	. Untere Schranke der Pfadzahl a_{low} für die Verteilung $L^* = (l_S; M - l_S; 0)$ bei	
	direkter Nachbarschaft von S und T	143
5.14	. Obere Schranke der Pfadzahl a_{big} für die Verteilung $L* = (l_S; M - l_S; 0)$ bei	
	direkter Nachbarschaft von S und T	144

5.15.	Minimale Pfadlänge k_u für das Erreichen einer bestimmten Pfadzahl <i>a</i> im Opti-	
	mum für die Verteilung $L^* = (l_S; M - l_S; 0)$ und direkter Nachbarschaft von S	
5.16.	und T	146
	barschaft von S und T	147
5.17.	Optimale Lastverteilungen $L* = (0; M - l_T; l_T)$ mit Last an allen k Weiterlei-	
	tungsknoten Beispiel: $Q = 0, 8, C_{comp} = 2, 9, C_{tx} = 1, 2, k = 8$	148
5.18.	Optimale Lastverteilungen $L* = (0; M - l_T; l_T)$ mit Last an k_u Weiterleitungs-	
	knoten Beispiel: $Q = 0, 8, C_{comp} = 2, 9, C_{tx} = 1, 2, k = 8$	149
5.19.	Gesamtenergieminimale, optimale Lastverteilung $L* = (0; M - l_T; l_T)$ mit Last	
	an k_u Weiterleitungsknoten Beispiel: $Q = 0, 8, C_{comp} = 2, 9, C_{tx} = 1, 2, a = 3, k = 8$	150
5.20.	Algorithmus zur Generierung und Auswahl optimaler Lösungen im $D-Modell$	156
5.21.	Heuristischer Algorithmus zur Ermittlung einer optimalen Lastverteilung auf nicht-	
	disjunkten Pfaden im $D-Modell$	163
5.22.	Relativer Vorteil ΔE_0^r durch Verarbeitung auf mehreren Pfaden	165
61	Untere Schranke der Pfadzahl a_i für die Verteilung $L \star = (0; M; 0)$ bei Identität	
0.1.	von S und T	171
62	Obere Schranke der Pfadzahl a_{12} , für die Verteilung $I * - (0; M; 0)$ bei Identität	1/1
0.2.	von S und T	171
6.3	Relativer Vorteil ΔE_0^r durch verteilte Verarbeitung bei Identität von S und T bei	1,1
0.01	ausreichender Nachbarschaftszahl	172
6.4.	Relativer Vorteil ΔE_0^r durch verteilte Verarbeitung bei Identität von S und T bei	
	a=1	172
6.5.	Notwendige Pfadzahl <i>a</i> für eine optimale Lösung durch Entlastung von <i>S</i> im Mo-	
	dell mit klassischer Senke	176
6.6.	Relativer Vorteil ΔE_0^r durch verteilte Verarbeitung auf V_F^{min} beim Modell mit klas-	
	sischer Senke	177
6.7.	Relativer Vorteil ΔE_0^r durch Verteilung der Übertragung auf zusätzliche disjunkte	
	Pfade beim Modell mit klassischer Senke	177
6.8.	Relativer Vorteil ΔE_0^r durch Verteilung der Verarbeitungslast auf V_E^{min} bei $Q = 1$	
	gegenüber $l* = (M; 0; 0)$	181
6.9.	Relativer Vorteil ΔE_0^r durch Verteilung der Verarbeitungslast auf V_E^{min} bei $Q = 1$	
	gegenüber $l * = (0; 0; M)$	181
6.10.	Obere Schranke der Pfadzahl a_{big} für den Fall $Q = 1$	184
6.11.	Minimale Pfadlänge k_u für das Erreichen einer bestimmten Pfadzahl a im Opti-	
	mum für den Fall $Q = 1$	185

6.12.	Relativer Vorteil ΔE_0^r durch Verteilung der Übertragung auf zusätzliche disjunkte	
	Pfade $Q = 1$	186
6.13.	Lokaler Algorithmus zur Bestimmung der Verarbeitungslast an Weiterleitungs-	
	knoten	191
6.14.	Gegenüberstellung des relativen Vorteils ΔE_0^r durch teilweise Verarbeitung an <i>H</i>	
	und T auf V^{min_E} für nicht-atomare und atomare Dateneinheiten	192
6.15.	Gegenüberstellung des relativen Vorteils ΔE_0^r durch teilweise Verarbeitung an <i>H</i>	
	und T bei Erweiterung von V_E^{min} für nicht-atomare und atomare Dateneinheiten.	192
7.1.	Verteilung und resultierender kumulierter Energieverbrauch von N_S , N_H und N_T	
	am Beispiel	201
7.2.	Beispielverteilungen der Lebensdauer über P_E und n_A	207
7.3.	Verlauf von E'_0 für positive x ($C_1 = 4, C_2 = 2, A = 1$)	212
B.1.	Schematischer Aufbau des MSB430H, entnommen aus [Baar u. a. 2007]	223

Tabellenverzeichnis

3.1.	Energieverbrauch je übertragenes Bit nach [McFarland 2008]	35
3.2.	Betriebsparameter eines MSP430-Signalprozessors (Beispiel)	45
5.1.	Relativer Vorteil (Bezogen auf E_0) von Lösungen mit Erweiterung von V_E^{min} ge- genüber gesamtenergieminimalen Lösungen	124
6.1.	Partielle Ableitungen der lokalen Energieverbräuche nach den einzelnen Kosten- parametern	198
7.1.	Wahrscheinlichkeitsverteilung der Rollen eines Knotens und zugehörige Energie- verbräuche	200
B.1.	Wichtige Eigenschaften des MSB430H-Sensorknotens, nach [Baar u. a. 2007]	223

Abkürzungsverzeichnis

A/D	Analog zu Digital
ARQ	Acknowledge-Request
AWGN	Additive White gaussian Noise
BER	Bit Error Rate
BIR	Business Informatics Research
bzw.	beziehungsweise
CMMBCR	Conditional Min-max Battery Cost Routing
CPU	Central Processing Unit
CTS	Clear To Send
d.h.	das heißt
DARPA	Defense Advanced resarch Projects Agency
DCF	Distributed Coordination Function
DIFS	DCF InterFrame Space
DSR	Dynamic Source Routing
EDGE	Enhanced Data Rates for GSN
EDR	Enhanced Data Rate
EIFS	Extended InterFrame Space
ESRT	Event to Sink Reliable Transport
FEC	Forward Error Control
FND	First Node Dies
GEAR	Geographic and Energy Aware Routing
GPS	Global Positioning System
GPSR	Greedy Perimeter Stateless Routing
GSM	Global System for Mobile Communications
HNA	Half of the Nodes Alive
i. A.	im Allgemeinen
i. d. R.	in der Regel
ICN	International Conference on Networks
IEEE	Institute of Electrical and Electronics Engineers
KI	Künstliche Intelligenz
LLC	Logical Link Control
LND	Last Node Dies
MAC	Medium Access Control

Abkürzungsverzeichnis

MANET	Mobiles Ad-hoc Netz
MBCR	Minimum Battery Cost Routing
MEMS	Micro Electro-Mechanical System
MIPS	Million Instructions Per Second
MMBCR	Min-max Battery Cost Routing
MTPR	Minimum Total Power Routing
0. g.	oben genannt
OS	Operating System
PDA	Personal Digital Assistant
PER	Packet Error Rate
PND	Part of Nodes Dies
QoS	Quality of Service
RMST	Reliable Multi Segment Transport Protocol
RTS	Request To Send
SD	Secure Digital
SIFS	Short InterFrame Space
SNR	Signal to Noise Ratio
SPI	Serial Peripheral Interface
SQLT	Sensor Query and Tasking Language
STEM	Sparse Topology and Energy Management
TAG	Tiny Aggregation
TU	Technische Universität
u. a.	unter anderem
usw.	und so weiter
vgl.	vergleiche
WLAN	Wireless Local Area Network
WSN	Wireless Sensor Network
XLM	Cross Layer Module
z. B.	zum Beispiel