Untersuchungen zur zerstörungsfreien Prüfung von CFK-Bauteilen für die fertigungsbegleitende Qualitätssicherung im Automobilbau

Von der Fakultät für Maschinenwesen der Technischen Universität Dresden zur Erlangung des akademischen Grades Doktoringenieur (Dr.-Ing.) genehmigte Dissertation

Dipl.-Ing. Antje Kochan geb. am 17. März 1981 in Halle (Saale)

Berichte aus der Kunststofftechnik

Antje Kochan

Untersuchungen zur zerstörungsfreien Prüfung von CFK-Bauteilen für die fertigungsbegleitende Qualitätssicherung im Automobilbau

Shaker Verlag Aachen 2012

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: Dresden, Techn. Univ., Diss., 2011

Die Ergebnisse, Meinungen und Schlüsse dieser Dissertation sind nicht notwendigerweise die der Volkswagen AG

Copyright Shaker Verlag 2012 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8440-0820-3 ISSN 1433-9978

Shaker Verlag GmbH • Postfach 101818 • 52018 Aachen Telefon: 02407 / 95 96 - 0 • Telefax: 02407 / 95 96 - 9 Internet: www.shaker.de • E-Mail: info@shaker.de

Vorwort

Die vorliegende Arbeit entstand während meiner dreijährigen Tätigkeit als Doktorandin in der Konzernforschung der Volkswagen AG in Wolfsburg.

Besonderer Dank für die wissenschaftliche Betreuung der Arbeit gilt meinem Doktorvater Herrn Prof. Dr.-Ing. habil. Prof. E.h. W. Hufenbach, Leiter des Instituts für Leichtbau und Kunststofftechnik der Technischen Universität Dresden. Herrn Prof. Dr. rer. nat. habil. H.-J. Ullrich danke ich für die eingehende Durchsicht der Arbeit und die Übernahme des Koreferates. Mein Dank gilt ebenso Herrn Prof. Dr. rer. nat. habil. G. Heinrich für die Übernahme des Vorsitzes der Prüfungskomission.

An dieser Stelle möchte ich mich ganz herzlich bei Herrn Dr. M. Ehleben für die kritische Durchsicht der Arbeit, die Unterstützung während meiner Zeit in der Konzernforschung und die fachliche Begleitung sowie die kompetenten Ratschläge und Anregungen bedanken.

Herrn Dr. H. Kurz sowie die Kollegen der Forschung und des FKV-Technikums sowie des Qualitätslabores danke ich für die hervorragende Unterstützung seitens der Volkswagen AG. Seitens des Institutes bedanke ich mich für die Unterstützung bei Herrn Oberingenieur Dr.-Ing. F. Adam.

Des Weiteren gilt mein Dank meinen Kollegen, Diplomanden und alle weiteren Personen, die zum Gelingen dieser Arbeit beigetragen haben.

Meiner Familie möchte ich für Ihr Verständnis danken. Mein besonderer und herzlicher Dank gilt meinem Freund Robert für die Unterstützung und seine endlose Geduld.

Braunschweig, Februar 2011

Antie Kochan

Kurzfassung

Ein großer Vorteil von Kunststoffbauteilen ist neben funktionellen Vorzügen die Kostenund Gewichtsreduzierung durch integrale Gestaltungsmöglichkeiten. Es können Geometrien umgesetzt werden, die mit metallischen Werkstoffen nur unter hohem Aufwand realisierbar sind. Insbesondere im Bereich der Faser-Kunststoff-Verbunde (FKV) gibt es hohen Forschungsbedarf hinsichtlich Reduzierung von Herstellungskosten, Erhöhung der Langlebigkeit aber auch der Reparaturfähigkeit. Die Erkennung von Defekten ist dabei eine grundlegende Voraussetzung. Für einen FKV-Serieneinsatz im Automobilbau gibt es jedoch kein bekanntes und ausreichendes Prüfkonzept der Schadenserkennung für die geforderten Stückzahlen. Die aus der Luft- und Raumfahrt bekannten Methoden lassen sich aufgrund ihres hohen apparativen Aufwandes und der eingeschränkten Tauglichkeit bezüglich geometrisch komplexer Bauteile nicht unmittelbar übernehmen. Es bestehen andere Anforderungen an ein Prüfkonzept für FKV-Bauteile im Automobilbau. Im Rahmen dieser Arbeit wurden zerstörungsfreie Prüfmethoden hinsichtlich ihrer Eignung zur Detektion nicht sicht barer Schäden systematisch untersucht und bewertet. Der Fokus lag dabei auf Bauteilen aus kohlenstofffaserverstärkten Kunststoffen des Automobils, die sowohl eine flächige als auch eine mehrfach gekrümmte Bauteilstruktur mit nicht-homogenen Wanddicken aufweisen können. In Abhängigkeit von der Art der Schädigung, etwa Einschlüsse, Zwischenfaserrisse oder Delaminationen wurden die unterschiedlichen Verfahren vergleichend in Hinblick auf Detektionssicherheit, -grenzen und Einschränkungen durch gegebene geometrische sowie werkstoffliche Bauteilausführungen bewertet und ein Konzept für eine fertigungsbegleitende Qualitätssicherung entwickelt.

Schlagwörter: zerstörungsfreie Prüfung, kohlenstofffaserverstärkter Kunststoff, Ultraschall-Prüfung, Thermografie-Prüfung, Röntgen

Inhaltsverzeichnis

1.			- CFK-Bautelle im Automobilbau	1
			ngssituation - thematische Einführung	
	1.2.	Zielset	zung und Vorgehensweise	. 2
2.	Gru		n - Stand der Technik	5
	2.1.	Zerstö	rungsfreie Prüfung	
		2.1.1.	Radiografische Verfahren	. 7
		2.1.2.	Elektrische Verfahren	
		2.1.3.	Optische Verfahren	
		2.1.4.	Thermografische Verfahren	. 13
		2.1.5.	Akustische Verfahren	
	2.2.	Qualit	ätssicherung	
		2.2.1.	Aufgaben der Qualitätssicherung im Produktentstehungsprozess .	. 20
		2.2.2.	FMEA und Fehlerbaumanalyse	
		2.2.3.	Qualitätsprüfung und Rolle der zerstörungsfreien Prüfung	. 25
		2.2.4.	Qualitätssicherung in der Fertigung im Automobilbau	. 26
3	Δna	lyse no	otentieller Fehler im Fertigungsprozess von CFK-Bauteilen	29
•			und ihre Fehler-Schadens-Grenze	
			führung einer FMEA im CFK-Fertigungsprozess	
	0.2.	3.2.1.	Durchführung FMEA - RTM-Fertigung	
		3.2.2.	Ergebnisse FMEA	
	3.3.		ische Bauteilfehler	
	0.0.	3.3.1.		
		3.3.2.		
		3.3.3.		
		3.3.4.		
1	Syct	omatic	sche Untersuchungen - ZfP von CFK-Prüfkörpern	45
4.			ahl geeigneter zerstörungsfreier Prüfverfahren	
			chsaufbau und Prüftechnik	
	4.4.	4.2.1.	Thermografie-Untersuchungen	
		4.2.1.		. 49 . 52
		4.2.3.		
	4.3.		örperaufbau und -herstellung	
	4.0.	4.3.1.	Erzeugung von künstlichen Imperfektionen	
		4.3.2.	Einfluss der Prüfkörperoberfläche	
		4.3.3.	Einfluss der Fertigungsparameter	
	4.4.		ssion der Ergebnisse der Platten-Prüfkörper	
	7.7.	4.4.1.		
		4.4.2.		
		4.4.2.		
		4.4.4.	Röntgen-Untersuchungen	
	4.5		ssion der Ergebnisse der Profil-Prüfkörper	
	1.0.		Profil PR01 - Geometrien	

II Inhaltsverzeichnis

	4.6.	4.5.2. Profil PR02 - Hohlprofil mit Verklebungen	109
5.	Anw	vendung - Überprüfung der Anwendbarkeit der ZfP-Methoden an einem	
	CFK	K-Bauteil 1	15
	5.1.	Versuchsaufbau und Prüftechnik	115
	5.2.	Diskussion der Ergebnisse	17
6.	ZfP	im Serienprozess - Fertigungsbegleitende QS im Automobilbau 1	24
	6.1.	Anforderungen an eine fertigungsbegleitende QS	124
	6.2.	Eingliederung in die Serienfertigung	126
	6.3.	Prüfkonzept und technische Aspekte	
		6.3.1. Variationen im Aufbau einer Prüfanlage	
		6.3.2. Erprobung einer möglichen Serienprüfung am Beispiel Thermografie 1	
		6.3.3. Einflussgrößen auf die Prüfung in der automobilen Serienanwendung 1	
	6.4.	Fazit der Konzeptuntersuchungen einer serienbegleitenden ZfP 1	.38
7.	Zusa	ammenfassung 1	39
Lit	eratı	urverzeichnis 1	41
Α.	Anh	ang	i
	A.1.	FMEA - Fehlerfunktionsanalyse	i
		FMEA - Ergebnisse	
		Übersicht Prüfköper	
	A.4.	ZfP Normen	vii

Formelzeichen und Begriffsdefinitionen

${\bf Formelzeichen}$	Einheit	Bedeutung
A	[-]	Amplitude
A_M	$[\mu m]$	Mittlerer Faserabstand
a	$[\mathrm{m}\mathrm{m}^2/\mathrm{s}]$	Temperaturleitfähigkeit
c	[m/s]	Schallgeschwindigkeit im Ausbreitungsmedium
c_p	$[\mathrm{J/gK}]$	Spezifische Wärme
d	[cm]	Ausbreitungsdicke
f	[Hz]	Frequenz
I	j-1 ·	Intensität
I_0	j-j	Ausgangsintensität
$I_{x,y}$	[cm]	Blickfeld
InSb	j-1 ·	Indiumantimonid
L	[cm]	Abstand Kamera zu Prüfobjekt
N	[mm]	Nahfeldlänge
p	[Pa]	Schallwechseldruck
p_0	[Pa]	Ausgangswert Schallwechseldruck
S_{14}	[-]	Messpunkte
T	[°C]	Temperatur
x	[cm]	Ausbreitungsrichtung
Z	[-]	Ordnungszahl
α , β	[°]	Öffnungswinkel Kamera
γ	[°]	Divergenzwinkel
λ	$[\mu m]$	Wellenlänge
λ_T	[W/mK]	Wärmeleitfähigkeit
μ	[-]	Schwächungskoeffizient
ρ	$[g/cm^3]$	Dichte
ϕ	[rad]	Phasenwert
ω	[Hz]	${\bf Modulations frequenz}$
\oslash	[cm]	Durchmesser
\perp		senkrecht
		parallel

3D

Abkürzung	Bedeutung
b.i.O.	bedingt in Ordnung
CCD	Charge-Coupled Device
CFK	Kohlenstofffaserverstärkter Kunststoffverbund
CT	Computertomografie
DFMAS	Design For Manufacture, Assembly and Service
EPS	Expandierte Polystyrol-Kugeln
EOP	End Of Production
FKV	Faser-Kunst st off-Verbund
FMEA	Fehlermöglichkeits- und Einflussanalyse
FTIR	Fourier-Transformations-Infrarotspektroskopie
FOV	Field Of View
MFU	Maschinenfähigkeitsuntersuchung
NETD	Noise Equivalent Temperature Difference
OLT	Optische Lockin-Thermografie
PEP	Produktentstehungsprozess
PMMA	Polymethylmethacrylat
Prepreg	Pre-impregnated
PTFE	Polytetrafluorethylen
PUR	Polyurethan
PVC	Polyvinylchlorid
QFD	Quality Function Deployment
QS	Qualitätssicherung
QM	Qualitätsmanagement
RCT	Röntgen-Computertomografie
RTM	Resin Transfer Moulding
SPC	Statistische Prozessregelung
SOP	Start of Production
ZfP	Zerstörungsfreie Prüfung
2D	Zweidimensional

Dreidimensional