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Abstract

Imitation learning has become a popular paradigm to extend the abilities of robots by
demonstrating new skills. Many methods have been proposed that allow a robot to detect
such demonstrations and to learn from them. However, there is a significant drawback with
state-of-the-art imitation learning approaches. Most of them consider imitation learning of
object movement skills as an isolated, data-driven method for learning object trajectories.
They neglect much of the information that is provided by the human interaction partner
and therefore miss many opportunities for increasing the generalization capabilities.

The work at hand addresses this drawback by proposing a whole systems view on imitation
learning. The main contribution of this thesis is an architecture for interactive imitation
learning of object movement skills. Its purpose is to enable learning skills from only a few
demonstrations, but still to be able to extensively generalize to new situations. This is
achieved by various methods. Firstly, a probabilistic learning scheme in combination with
movement optimization is suggested. It allows to exploit the variance information from
multiple demonstrations. While imitating, the robot can diverge from variant parts of the
movement to respect additional criteria regarding the robot’s limits. Furthermore, a novel
method for automatically selecting skill-dependent task spaces is presented. These task
spaces represent a skill in relative coordinates of specific object feature points, such as
their top or bottom sides. That way, the learned skill is decoupled from specific objects
and from the robot’s embodiment. In particular, it enables the robot to perform a skill
in different ways, such as one-handed or bimanually. This is achieved by introducing the
concept of a dynamic body schema. All of the presented methods respect that learning is
performed in interaction with a human tutor. The tutor is modelled by the system, which
allows to detect certain postures for instructing the robot. Additionally, the model is used
to estimate the non-measurable internal state of the tutor, like the effort or discomfort of
certain poses. This allows to deduce skill-relevance of specific phases of a demonstrated
movement. The presented system also comprises an attention mechanism, which is directly
coupled to the robot control scheme using the novel concept of linked objects. Consequently,
the tutor can highlight relevant objects, from which the robot either learns or to which it
applies a learned skill.

All of the proposed methods are not presented in isolation. Instead, the thesis emphasizes
the whole systems view by integrating them into a consistent architecture. The general-
ization capabilities of this architecture go beyond the state of the art, which is validated
by several experiments. For instance, one experiment shows that a child-sized humanoid
robot with 26 degrees of freedom is able to learn the skill of stacking objects. In addition
to imitating the skill as demonstrated, the robot is able to generalize it to different objects,
situations that contain obstacles, and to a bimanual performance. Even more, the skill
learned by the humanoid robot can also be reproduced by other robots.
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Symbols

General notation:
x A scalar value
x A vector

X =

⎛
⎜⎝ x1,1 · · · x1,m

...
. . .

...
xn,1 · · · xn,m

⎞
⎟⎠ The matrix X with its elements xi,j

XT The transpose of matrix X
X(i) A matrixX can refer to a subsumption of multiple

matrices. In this case the i is used to refer to the
according sub-matrix.

x̂ An estimation for the value of expression x

Special notation:
v A linear velocity vector
ω An angular velocity vector
r A radius vector
p(x) The probability of expression x
D Space dimensionality
K Number of Gaussian components in a gmm
πk The a priori probability of the Gaussian compo-

nent k
μk The mean vector of the Gaussian component k
Σk The covariance matrix of the Gaussian component

k
N (μ,Σ) The multivariate normal distribution with mean

vector μ and covariance matrix Σ
N (x;μ,Σ) The probability of data vector x with regard to

the normal distribution N (μ,Σ)
L Log-likelihood
q A joint angle
m The gravity force vector for a mass m




